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1. Introduction

The study of living systems has taken many forms, from research into fundamental physical
processes to ethological studies of animal behavior on a global scale.  Traditionally these investigations
have focused exclusively on “real” biological systems existing in our world’s ecological system.  Only
recently have investigations of living systems begun to occur in “artificial” systems in computers and
robotic hardware.

The potential benefits of an enhanced understanding of living systems are tremendous.  Some
are of a grand scale and are intuitively obvious, such as improvements in our ability to manage our own
real ecosystems, the development of true machine intelligence, and the possibility of understanding our
own mental and physiological processes.  Some are of a more prosaic scale, but more accessible
thereby, and perhaps of more immediate utility, such as simple learning systems, robust pattern
classifiers, general purpose optimization schemes, robotic controllers, and evolvable software
algorithms.  The technological issues of the study of Artificial Life (ALife) are well laid out by Langton
[27] in the proceedings of the first ALife workshop; the societal and philosophical implications of ALife
are well presented by Farmer and Belin [16] in the proceedings of the second ALife workshop.

This paper discusses a computer model of living organisms and the ecology they exist in called
PolyWorld.  PolyWorld attempts to bring together all the principle components of real living systems
into a single artificial (man-made) living system.  PolyWorld brings together biologically motivated
genetics, simple simulated physiologies and metabolisms, Hebbian learning in arbitrary neural network
architectures, a visual perceptive mechanism, and a suite of primitive behaviors in artificial organisms
grounded in an ecology just complex enough to foster speciation and inter-species competition.
Predation, mimicry, sexual reproduction, and even communication are all supported in a
straightforward fashion.  The resulting survival strategies, both individual and group, are purely
emergent, as are the functionalities embodied in their neural network “brains”.  Complex behaviors
resulting from the simulated neural activity are unpredictable, and change as natural selection acts over
multiple generations.

In many ways, PolyWorld may be thought of as a sort of electronic primordial soup
experiment, in the vein of Urey and Miller’s [33] classic experiment, only commencing at a much
higher level of organization.  While one could claim that Urey and Miller really just threw a bunch of
ingredients in a pot and watched to see what happened, the reason these men made a contribution to
science rather than ratatouille is that they put the right ingredients in the right pot ... and watched to see
what happened.  Here we start with software-coded genetics and various simple nerve cells (light-
sensitive, motor, and unspecified neuronal) as the ingredients, and place them in a competitive
ecological crucible which subjects them to an internally consistent physics and the process of natural
selection.  And watch to see what happens.

Due especially to its biological verisimilitude, PolyWorld may serve as a tool for investigating
issues relevant to evolutionary biology, behavioral ecology, ethology, and neurophysiology.  The
original motivations for its design and implementation, however, were three-fold:  (1) To determine if it
is possible to evoke complex ethological-level survival strategies and behaviors as emergent phenomena
(without their being programmed in), (2) To createartificial  life that is as close as possible to real life,
by combining as many critical components of real life as possible in an artificial system, and (3) To
begin exploring Artificial Life as a path toward Artificial Intelligence, utilizing the same key elements
that led to natural intelligence:  the evolution of nervous systems  in an ecology.
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This paper will discuss the design principles employed in PolyWorld, the “species” that have
evolved in various simulations, and the group and individual behaviors observed in these simulations.

2. Background

This work owes much in terms of inspiration to the work of W. Grey Walter [46,47,48],
Valentino Braitenberg [3], Richard Dawkins [9,10,11], John Holland [21], Ralph Linsker [29,30,31],
and John Pearson [37].

Walter’s early work with simple electronic “turtle” nervous systems, and Braitenberg’s
“vehicles” suggested the whole bottom-up, synthesis-before-analysis approach, along with the viability
of making somewhat arbitrary connections between simple sensory inputs and simple motor controls.
PolyWorld (PW) diverges from these works by encapsulating its synthetic organisms in a simulated
world, by employing neural systems and learning rules from the world of computational
neurophysiology, and by supporting a range of interactions between organisms.  And though a number
of other researchers (Travers [45]; Wharton and Koball [49]; and even a commercial product from
Bascom software, the author of which is not known) have built simple Braitenberg vehicle simulators
(or actual physical models in the case of Wharton and Koball), these typically concentrated on a wiring-
diagram user interface, and implemented vehicles through only level number 2 (of 14).  PW, on the
other hand, takes note of the fact that by as early as Vehicle 4, Braitenberg invoked a form of natural
selection, and supports the evolution of its organisms’ “wiring diagrams”, rather than having them
specified by hand.  The neural systems of PW also utilize Hebbian learning during the lifetime of an
individual, which is undoubtedly purposefully similar to Braitenberg’s “mnemotrix wire”.

Richard Dawkins’s writings communicate both the beauty and the effectiveness of evolutionary
dynamics.  In personal communications, he has also brought out key issues in speciation, such as the
isolation of populations and the reduced viability of divergent species interbreeding, that have become
important elements of this simulator.

The artificial neural systems employed in PW are based on Hebbian learning, and a novel
approach to network architecture specification.  Besides the obvious importance of Donald Hebb’s [18]
research and speculations, their instantiation in the work of Ralph Linsker and John Pearson has guided
the selection of these particular techniques for use in PW.  Linsker’s work demonstrated that Hebbian
learning, as employed in PW, can and will self-organize important types of neural response patterns
observed in early visual systems of real organisms.  John Pearson, working with Gerald Edelman,
utilized a variant of Hebbian learning and successfully demonstrated important principles of neuronal
and synaptic self-organization—cooperation and competition (for representing their observed inputs)—
that again correspond well to phenomena observed in real living systems.  PolyWorld takes this
unsupervised learning technique, and embeds it in arbitrary, evolving neural architectures, and then
confronts the simulated neural system with survival tasks in a simulated ecology.

In the last couple of decades, a number of researchers have developed computational ecologies
targeted at various scientific issues.   Conrad [7,8] and Packard [35] have built systems to explore
fundamental principles of evolutionary dynamics.  Jefferson et al [23],  and Collins and Jefferson [6]
have constructed systems dealing with evolutionary mechanisms, behavioral goals, and learning
architectures (Finite State Automata vs. Neural Networks).  Taylor et al [42] developed a system to
investigate the relationship between individual behavior and population dynamics.  Ackley & Littman
[1] built such a simulator to demonstrate a novel mechanism by which evolution can guide learning.
Peter Todd and Geoffrey Miller [32,43,44] have explored evolutionary selection for different learning
algorithms in organisms with simple vision systems and an innate sense of “smell” that functions with
varying degrees of accuracy.  Danny Hillis [19,20] has used simple computational ecologies to evolve
“ramps”, and exchange-sort algorithms.  Core Wars [13,14,15]  is a non-evolving ecology of code
fragments, and Rasmussen’s VENUS [38] is an evolving system based largely on Core Wars.
Thomas Ray [39] has also developed a computational ecology, Tierra, based on evolving code
fragments.  And John Koza [26] has developed a system for evolving LISP functions that he terms
“Genetic Programming”.  PolyWorld, in its original conception, was targeted principally at the
evolution of neural architectures for systems faced with complex behavioral tasks;  however, its
biologically motivated behavioral and reproductive strategies, and the evolutionary mechanisms
employed also make it suitable for use in behavioral ecology and evolutionary biology.  The extent of
PW’s fidelity to biological systems, together with its unique use of a naturalistic visual perceptive
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system to ground its inhabitants in their environment distinguish it significantly from previous
ecological simulators.

John Holland’s ECHO system explicitly models a form of predation, involving “offense” and
“defense” genes that determine the outcome of violent encounters.  Holland notes that in his system,
this form of predation was essential to the evolution of complex genomes.  Though not as crucial to
PW’s genetic complexity, predation was also designed into PW from the beginning.  In PW, genes
also affect the outcome of violent encounters between organisms, but more indirectly through their
“physiological” characteristics (strength and size).  There is also a behavioral component to the outcome
of these encounters in PW, namely the degree of “volition” associated with the “fighting” behavior (the
activation level of a predefined “fight” neuron), that differs from ECHO’s handling of predation.

Belew et al [2] give an excellent overview of recent work in the area of evolving neural
networks.  Reviewed briefly there, and presented in detail in their own paper, Harp et al [17] have
developed a scheme for evolving neural architectures that has an element of ontogenetic development.
Their approach involves a set of synaptic projection radii between neuronal “areas”.  PW’s scheme for
evolving architectures relies on the specification of connection densities and topological distortion of
connections between neuronal groups.  These architectural criteria are represented in the genome, and
then expressed as an organism’s neural architecture at “birth”.  This technique, though perhaps not
quite as developmental as Harp’s approach, or the non-neural yet very biologically motivated cellular
growth work of de Boer et al [12], has the strengths of being much more developmental (and
representationally compact) than a simple encoding of synaptic efficacy in the genes, and being
computationally very efficient.  It attempts to capture the statistical results of development, without the
necessity of modeling the developmental process itself.

David Chalmers [4]  has experimented with evolving supervised neural network learning
algorithms, successfully evolving the classic "delta rule" for a linear, single layer perceptron, and
speculated on applying this "genetic connectionism" approach to other architectures and learning
algorithms.  He also varies the diversity of his learning tasks, and demonstrates a correlation between
this diversity and the generality of the evolved learning algorithm, similar to the correlation observed
between amount of training data and generalization in supervised, "Back-Prop" neural networks.
Though the evolution of unsupervised learning algorithms is an area of special interest to the author, the
current version of PW has the classic "Hebb rule" built in.  Neural architectures are, however, evolved
in PW.  Interestingly, by permitting free movement in a simulated environment, PW effectively can
generate an unlimited amount of diverse input for the neural mechanisms employed by its denizens.

Nolfi et al [34] and Parisi et al [36] have explored evolving the connection strengths in small,
fixed-architecture feed-forward neural networks controlling simple movement strategies in organisms
evolved to seek food.  The organisms are directly provided with angle and distance to food items, and
are alone in their environment.  Nolfi, Parisi, et al also introduce a "self-supervised" learning
technique, using the traditional back-propagation-of-error algorithm, and demonstrate an improvement
in evolved foraging efficiency associated with a learned ability to predict the sensory consequences of
motor activity.  PW employs an unsupervised learning algorithm and arbitrary neural architectures,
with a more biologically-motivated vision mechanism, as well as a competitive ecology.

For the purpose of computer graphics animation, Renault et al [41] have experimented with
visual systems for controlling computer-generated characters.  Their system goes beyond visual
processing, however, to include unique object identification and distances to objects as part of the input
to the character control programs.  These control programs are rule-based and completely hand crafted,
specifically to provide obstacle avoidance.  In contrast, PW uses only the pixel colors associated with
visual processing, and provides these as input to the non-rule-based neural systems of evolving
organisms, without specifying the meaning or use of this information.

Dave Cliff [5] has implemented a neural visual system for a simulated fly, and states that it is
only by a grounding perceptive mechanism such as vision that neural models can be made sense of.
For the purposes of his simulation, the model fly is attached to a rotating, but otherwise unmoving test-
stand similar to real experimental setups.  Organisms in PW use vision as their primary sense
mechanism, but are free to explore their environment, and must do so effectively—using their vision to
guide a suite of primitive behaviors—in order to survive and reproduce.

One of the first decisions necessary when commencing an investigation into artificial living
systems is that of scale:  At what level of detail is it desirable to specify the parameters and underlying
models of the simulation, and at what level does one wish to observe the resultant behaviors?  The
study of real living systems has spanned many physical and temporal scales:  from molecular level
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biochemical processes that take place in nanoseconds, through cellular level neural processes with time
scales of a few milliseconds, to global evolutionary processes occurring over geological time scales.
Given current constraints on compute power, it is simply not feasible to begin computation with sub-
atomic physics and expect to observe ethological behaviors.  Since ecology-level dynamics were the
desired output level of the system being designed, it was clear that behavior models for PW’s
individual organisms could not be too complex.  However, a desire to avoid rule-based behavior
specification led to a decision to model the organisms’ behaviors at the neuronal level.  Since even
natural evolutionary forces are constrained by their previous successes, the real world has filled up with
organisms exhibiting a wide range of variations on assemblages of neuronal cells (in addition to other
cell types, of course).  Modeling PW’s organisms at this level permits us to sidestep millions of years
of evolution, while still taking advantage of its results to date.

3. Overview

PolyWorld is an ecological simulator of a simple flat world, possibly divided up by a few
impassable barriers, and inhabited by a variety of organisms and freely growing “food”.  The
inhabiting organisms use vision as input to a neural network brain that employs Hebbian learning at its
synapses.  The outputs of this brain fully determine the organisms’ behaviors.  These organisms and all
other visible constituents of the world are represented by simple polygonal shapes.  Vision is provided
by rendering an image of the world from each organism’s point of view, and using the resulting pixel
map as input to the organism’s brain, as if it were light falling on a retina.

A small number of an organism’s neurons are predetermined to activate a suite of possible
primitive behaviors, including eating, mating, fighting, moving forward, turning, controlling their field
of view, and controlling the brightness of a few of the polygons on their bodies.  Organisms expend
energy with each action, including neural activity.  They must replenish this energy in order to survive.
They may do so by eating the food that grows around the environment.  When an organism dies, its
carcass turns into food.  Because one of the possible primitive behaviors is fighting, organisms can
potentially damage other organisms.  So they may also replenish their energies by killing and eating
each other.  Predation is thus modeled quite naturally.

The organisms’ simulated physiologies and metabolic rates are determined from an underlying
genome, as are their neural architectures.  When two spatially overlapping organisms both express their
mating behavior, reproduction occurs by taking the genetic material from the two haploid individuals,
subjecting it to crossover and mutation, and then expressing the new genome as a child organism.

One way to look at this artificial world is as a somewhat complex energy balancing problem.
The fittest organism will be the one that best learns to replenish its energies by eating, and to pass on its
genes by mating.  The particular patterns of activity that a successful organism engages in—the
methods by which it sustains and reproduces itself—will be optimal for some particular fitness
landscape.  But since that fitness landscape depends upon the behavior of the world's other inhabitants,
it must, per force, be a dynamic landscape.  Since there is considerable variation in the placement and
behavior of food and other organisms in the world, that fitness landscape is also fundamentally
stochastic.  Indeed, if the "fittest organism in the world" fails to find a suitable mate in order to pass on
the important bits of its genetic material, then those genes will be lost... possibly for all time.
Accordingly, every world has the potential to be quite different from every other world.

Throughout this paper, the term created is applied to organisms spontaneously generated by the
system (like the initial seed population), while born is used to refer to organisms resulting from the
mating behaviors of the organisms.  Populations of organisms that have evolved a set of behaviors
which allow them to replenish their numbers through births, with no further creations (after some point
in time), are said to exhibit a Successful Behavior Strategy (SBS), or simply to be successful.  Once an
SBS has emerged, there is no fitness function except survival.  Until an SBS has emerged, PW is run
in a sort of “on-line Genetic Algorithm (GA)” mode (also known as a Steady State GA), with an ad hoc
fitness function.  During this stage, a minimum number of organisms may be guaranteed to populate
the world.  If the number of deaths causes the number of organisms extant in the world to drop below
this minimum, either another random organism may be created by the system, or the offspring of two
organisms from a table of the N fittest may be created, or, rarely, the best organism ever may be
returned to the world unchanged (known as an elitist strategy in traditional GAs).  This ad hoc fitness
function rewards organisms for eating, mating, living their full life span, dying with reserve energies,
and simply moving.  Each reward category is normalized by the maximum possible reward in each
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category, and has a specifiable scale factor to permit easy tuning of the fitness function.  Some
simulation runs acquire an SBS in the first seed population and never require this on-line GA stage.
Others never acquire an SBS, and are considered unsuccessful simulations.

Current high end simulations typically involve over 300 organisms, with up to approximately
200 neurons each, and require about 13 seconds per time-step on a Silicon Graphics Iris 4D/240-GTX.
With an average life span of about 500 time-steps, and a time-to-first-offspring of about 100 time-
steps, this means that 500 generations can be run at this complexity in about 1 week.  More modest
simulations with around 100 comparable organisms require about 4 seconds per frame, and take a day
or two for the same task.  And at the low complexity end, simple demonstration worlds can be run in
“real time”, at a few frames per second, and allow a more interactive experience for learning the
system.  Figure 1 shows a sample view of the PolyWorld environment.

4. Genetics

An organism’s genes completely encode both its “physiology” and its neural architecture.  Table
1 lists the full complement of genes present in the organisms of PolyWorld.

• size
• strength
• maximum speed
• ID (green coloration)
• mutation rate
• number of crossover points
• life span
• fraction of energy to offspring
• number of neurons devoted to red component of vision
• number of neurons devoted to green component of vision
• number of neurons devoted to blue component of vision
• number of internal neuronal groups
• number of excitatory neurons in each internal neuronal group
• number of inhibitory neurons in each internal neuronal group
• initial bias of neurons in each non-input neuronal group
• bias learning rate for each non-input neuronal group
• connection density between all pairs of neuronal groups and neuron types
• topological distortion between all pairs of neuronal groups and neuron types
• learning rate between all pairs of neuronal groups and neuron types

Table 1.  List of genes in organisms of PolyWorld.

All genes are 8 bits in length, and may be Gray-coded or binary-coded.  All but the ID gene are
used to provide 8 bits of precision between a specifiable minimum and maximum value for the
corresponding attribute.  For example, if the minimum possible size is minSize, and the maximum
possible size is maxSize, and the value of the size gene (scaled by 255 to lie between 0.0 and 1.0) is
valSizeGene, then the size of the organism with this gene will be:

size = minSize + valSizeGene * (maxSize - minSize)

These extrema values, along with a variety of other controlling parameters for the simulation, are
contained in a “worldfile” that is read by the simulator at startup.

The first 8 genes control the organism’s simulated physiology.  Its size and strength affect both
the rate at which it expends energy and the outcome of “fights” with other organisms.  In addition, its
size is related directly to the maximum energy that it can store internally.  The next gene, maximum
speed, also affects its “metabolic” rate.

The ID gene’s only function is to provide the green component of the organism’s coloration at
display time.  Since organisms can actually see each other, this could, in principle, support mimicry.
For example, a completely passive species could evolve to display the green coloration of a very
aggressive species if it were of selective advantage.  It might also be possible to attract potential mates
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by displaying the green coloration of food, though this might be of limited survival value.  (In practice,
however, neither of these somewhat sophisticated evolutionary responses has yet been observed.)

Mutation rate, the number of crossover points used during reproduction, and maximum life
span were placed in the genes in order to permit a kind of meta-level genetics, and in recognition of the
fact that these parameters were themselves evolved in natural systems.  They are, however, typically
constrained to operate within “reasonable” limits; 0.01 to 0.1 for mutation rate, 2 to 8 for number of
crossover points, and a few hundred to a few thousand “time-steps” for life span.

The final physiology gene controls the fraction of an organism’s remaining energy that it will
donate to its offspring upon birth.  The offspring’s total available energy on birth is the sum of these
contributions from the two parents.  Accordingly, at least one aspect of sexual reproduction may be
captured by PW’s evolutionary “biology”:  it is entirely possible for two interbreeding sub-species to be
almost identical genetically, differing only in the amount of personal energy devoted to the reproductive
process.  PW has not yet been instrumented to observe for this phenomenon.

The remaining genes are used to define the organism’s neural architecture.  These control
parameters will be discussed in the section on Neurons and Learning.  It should be noted here,
however, that one of the motivations for this method of specifying the neural architecture was to reduce
the number of genes necessary to specify the neural system.  Early versions of PW used a simpler,
fully recurrent neural architecture, and maintained a complete matrix of synaptic efficacies between all
pairs of neurons in the genes.  For 200 (NN) neurons, this older model required 40,000 (NN

2) genes.
The current scheme supports evolving neural architectures which are fully specified by 12NG

2 +
232NG + 1026, where NG is the number of internal neuronal “groups” or clusters (output group sizes
are fixed to 1, and input groups do not need biases, bias learning rates, or incoming synaptic
connections).  Thus, for 4  internal groups, with up to 32 neurons per group, plus up to 16 neurons per
vision group (of which there are 3, one for each color component:  red, green, blue), plus 2 other input
groups (one neuron per group), plus the standard 7 output groups (one neuron each), a network of up
to 185 neurons can be fully specified by just 2,146 genes.  The large constants in this equation (232
and 1026) are due to the fixed set of input and output groups, and, especially, the desire to maintain
each output neuron as a distinct group.  Though the number of specifications are significantly reduced
from a full crossbar matrix, this number still heavily outweighs the number of genes devoted to
physiology.  To permit a more robust exploration of the space of possible physiologies, then, one
crossover during genetic reproduction is always forced to occur somewhere within the set of
physiology genes.  Note that since the minimum number of crossover points is typically set to 2,
crossover will also be employed at some point(s) in the neurophysiology genes.

An organism’s genome is allocated and interpreted such that space is available for the maximum
possible number of neuronal groups.  That is, one of the parameters specified per pair of groups in a
network with 3 groups out of a maximum of 5 groups would be accessed as:

1,1     1,2     1,3       --       --      2,1     2,2     2,3       --       --     3,1     3,2     3,3       --       --

where the entries marked “--” serve simply as place holders.  This is as opposed to an access scheme
looking like:

1,1     1,2     1,3     2,1     2,2     2,3     3,1     3,2     3,3

where the entries are contiguous.  The reason for this is to permit a smoother evolution of these neural
architectures.  The addition of a fourth group would leave the old connections intact in the first
representation, but not in the second.  It is even possible for a useful sub-component of the architecture
to ride along dormant in the genes to be expressed at a later time.

Though learning is supported in the neural network model employed in PW, only the
architecture and some initial values are encoded in the genes; hence evolution in PW is purely
Darwinian, not Lamarckian.

As in most GA’s, when an organism is created from scratch, the bits in its genes are first
zeroed, and then turned on with a certain bit probability.  Unlike most GA’s, it is possible to specify a
range of legal bit probabilities, rather than always using 0.5.  The bit probability for an individual
organism is then randomly selected from this range and used to initialize the organism’s bit-string
genome.   So the probability of a bit being on in a particular organism will depend on the value
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randomly selected from the specified range, while the probability of a bit being on in the population as a
whole will just be the mean of the specified range (0.5 if the range is 0.0 to 1.0).  This permits a wider
variance in local, organism-specific bit probabilities in early populations, rather than depending entirely
on mutation and cross-over to so shuffle the bits.  Whether this is of any real value should be tested in a
simpler GA system, and may be problem-specific in any event.  Here it was felt that both the older
fully-recurrent neural network architecture and the later evolving neural architectures were more likely
to have behaviorally/evolutionarily useful solutions with lower bit densities; this provided a mechanism
for so biasing the initial seed population without ruling out selection towards the unexpected end of the
spectrum.

There is an optional “miscegenation function” (so dubbed by Richard Dawkins), that may be
used to probabilistically influence the likelihood of genetically dissimilar organisms producing viable
offspring; the greater the dissimilarity, the lower the probability of their successfully reproducing.  This
function is not typically invoked until after a (specifiable) “significant” number of births without an
intervening creation in order to allow the early stages of the simulation to explore as many genetic
recombinations as possible.  It can also be turned off entirely.

5. Physiology and Metabolism

As discussed above, the simulated physiology of PolyWorld’s organisms is determined by their
genes.  The size of the organism directly affects the maximum amount of energy that the organism can
store.  If an organism’s size is allowed to range between minSize and maxSize, and its energy capacity
ranges between minECap and maxECap, then a given organism’s actual energy capacity, ECap is given
as:

ECap = minECap + (size - minSize) * (maxECap - minECap) / (maxSize - minSize)

Similar linear relations are used to determine the influence of an organism’s size on the rate at which it
expends energy during forward or turning movement (relative to a specifiable maximum-size-penalty),
and a size-advantage it will have during a fight with another organism (relative to a specifiable
maximum-size-advantage).

An organism’s strength also affects both its energy expenditure and its advantage in a fight.
Strength directly scales the total energy used in a given time step, and thus usually ranges around 1.0
(typically 0.5 to 2.0).  An attacker’s strength also scales the effect on the victim’s energy loss (fighting
is discussed in more detail below in the section on Behavior).

The energy expended by an organism’s neural processing is determined linearly from the
number of neurons and the number of synapses it has.  A maximum number of neurons and synapses
is determined from the control parameters for the entire world, then each individual’s neural energy
expenditure is computed relative to these maxima.  Globally applied “neuron-to-energy” and “synapse-
to-energy” conversion factors then multiply these scaled neuron and synapse counts to determine the
actual energy expended per time step.

There are similar behavior-to-energy conversion factors for each of the primitive behaviors
(eating, mating, fighting, moving, turning, focusing, and lighting).  The total energy expended in a
time step is then the activation (0. to 1.) of the corresponding output/behavior neuron multiplied by that
behavior’s energy-conversion factor, summed over all behaviors, plus the neural energy expenditure,
plus a specifiable fixed energy drain, with this sum finally scaled by the organism’s strength.

As should be evident, there are clear energy conservation benefits to being small and weak, yet
there are clear predatory advantages to being large and strong.  Size also permits an overall greater
capacity to store energy, thus making energy available for additional behavioral activity, including
reproduction.  The interplay between these opposing advantages is intended to produce niches in the
fitness landscape, which may change over time.  There are similar opposing pressures between energy
expenditure and visual acuity on the number of input neurons devoted to vision.

There are two classes of energy storage in each organism:  health-energy, and food-value-
energy.  Both are replenished by eating food.  Both are depleted by neural activity and by engaging in
the various behaviors.  But when an organism is attacked, only its health-energy is depleted by the
attack.  If this health-energy reaches zero, the organism dies.  When an organism dies it is converted
into a piece of food containing an amount of energy equal to the organism’s food-value-energy.  This
separation of health-energy from food-value-energy makes the predator-prey interactions quite natural;
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i.e., it is possible for an organism to be killed by having its health-energy driven to zero, while still
maintaining a relatively high food value for the attacker.

An organism’s food-value-energy will always be greater than or equal to its health-energy, yet
both classes of energy have the same maximum capacity.  Accordingly, an organism may continue to
eat to replenish its health-energy after its food-value-energy has reached capacity.  It is the health-
energy that is provided as input to the neural network (see next section), and that is used to determine
the amount of energy to be transferred to offspring.

Purely for the purposes of display, an organism’s length and width are scaled by (the square
root of) its maximum speed, length being multiplied, width being divided.  Thus faster individuals will
appear longer and sleeker, while slower individuals will appear shorter and bulkier.  Since an
organism’s visual acuity is subject to evolutionary pressures, it is conceivable that an organism might
emerge that was able to ascertain another organism’s maximum speed purely from its shape, if there
was a great enough advantage to the acquisition of this information.

6. Neural Systems and Learning

The inputs to an organism’s neural network “brain” are its “vision”, the current normalized level
of its internal health-energy store, and a random value.  The outputs are the suite of 7 possible primitive
behaviors (eating, mating, fighting, moving, turning, focusing, and lighting).  The internal neurons
and all of the synaptic connections have no prespecified functionality; their utility is determined entirely
by genetics and natural selection.

The form of an organism’s brain, or neural system, is fully characterized by a set of parameters
that are encoded in its genes.  Referring back to Table 1, notice that the number of neurons devoted to
each color component of vision is specified separately, permitting a specialization for more resolution in
the most effective color, should this be of selective advantage.  These numbers typically range between
1 and 16 neurons per color.

Next is a parameter that specifies the number of internal neuronal groups or clusters.  This
typically ranges from 1 to 5.  In addition, there are 5 input groups (red vision, green vision, blue
vision, energy level, and random), plus 7 output groups (the behaviors listed above).

Each neural group may have distinct populations of excitatory (e-) and inhibitory  (i-) neurons.
The number of e- and i-neurons are specified on a per group basis, and typically range between 1 and
16 neurons of each type.  Synaptic connections from e-neurons are always excitatory (ranging from 0.0
to a specifiable maximum efficacy).  Synaptic connections from i-neurons are always inhibitory
(ranging from -1.e-10 to the negative of the maximum efficacy).

Though the bias on each of the non-input neurons varies during the simulation, the initial values
for these biases and their learning rates are specified on a per group basis, for each of the non-input
neural groups.  Biases are updated by a Hebbian learning rule, as if it were a synaptic connection to a
neuron that was always fully activated, but unlike other synapses in this network, the bias may change
sign.  Biases typically range from -1.0 to 1.0, and bias learning rates typically range from 0.0 to 0.2.

The remaining parameters—connection density (CD) , topological distortion (TD), and learning
rate (LR)—are all specified for each pair of neuronal groups and neuron types.  That is, separate values
for each of these parameters are specified for the excitatory-to-excitatory (e-e), excitatory-to-inhibitory
(e-i), inhibitory-to-inhibitory (i-i), and inhibitory-to-excitatory (i-e) synaptic connections between
group i and group j, for each pair of groups i and j.

Connection density, as the name suggests, is used to determine the extent of the connectivity
between neuronal groups.  The number of e-e synapses between group i and group j is given by the
nearest integer to  CDe-e(i,j) * Ne(i) * Ne(j), where CDe-e(i,j) is the e-e CD from group j to group i,
Ne(i) is the number of e-neurons in group i, and Ne(j) is the number of e-neurons in group j.  Similar
expressions hold for the other types of connections between all pairs of groups.  CD can range from
0.0 to 1.0.

Topological distortion is used to determine the degree of disorder in the mapping of synaptic
connections from one group to the next.  That is, for a TD of 0.0, synapses are mapped to perfectly
contiguous stretches of neurons in the adjacent layer; for a TD of 1.0, synapses are mapped in a
completely random fashion between adjacent layers.  Thus retinatopic maps such as are observed in
natural organisms can be enforced (or not) at the architectural level (as well as resulting from the
learning process).  TD typically ranges from 0.0 to 1.0.
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Learning rate controls the Hebbian learning process at the synapses between each pair of
neuronal groups.  This permits natural selection to favor hardwired, “instinctive” connections for some
neural pathways, while supporting learning in other pathways.  LR typically ranges from 0.0 to 0.2.

This method of specifying the neural architecture is fairly general, and is not biased for any
particular neural organization.  Possibly, one might expect to evolve a preponderance of inhibitory
connections, especially locally, if the simulated neural architectures evolve to match real neural systems;
yet the possibility exists for establishing local excitatory connections (such as are found in CA3 in the
hippocampus).   The technique does not, however, explicitly model architectures whose characteristics
are heavily based upon spatial organization (such as the parallel fibers originating from the granule cells
in the cerebellum).  A straightforward extension to the current method, that allowed unique
specifications of the same parameters along multiple spatial dimensions, could account for such
organizational schemes.  However, with the limited compute resources currently being applied to PW
simulations, and thus the limited number of neurons permitted in each brain, it was not deemed
worthwhile to further decompose the groups into these spatial subcategories.

When an organism’s brain is “grown” from its underlying genome, the synaptic efficacies are
randomly distributed between specifiable minimum and maximum values.  The brain is then exposed to
a sequence of mock visual inputs consisting of random noise, for a specifiable number of cycles.  This
is all pre-birth.  In this fashion, it is unnecessary to store any synaptic efficacies in the genes.  This
approach was inspired by Linsker’s simulations of visual cortex, which gave rise to on-center-off-
surround cells, orientation-selective cells, and so on, when exposed only to noise.  The crucial aspects
of the networks in this case are their architecture—layered receptive fields in Linsker’s case, evolved
arbitrary topology in PW—and the learning rule—Hebbian learning in both cases.

It was debated whether to update all the organisms’ brains synchronously or not.  That is,
whether each organism’s neural network should be allowed to make a complete neural activation and
synaptic learning pass with each time step.  Even though it was desired to penalize organisms that
evolved additional neurons and synapses, synchronous updating was ultimately selected, primarily
because the corresponding structures in nature are executed in parallel, and penalties based on their
serial implementation would be excessive.  The penalty is more properly derived from the additional
energy use associated with these additional neural structures.

At each time step, the input neurons are set to the appropriate values, corresponding to the
organism’s visual field, its current health-energy level, and a random number.  New neuronal
activations are computed by the simple formulae:

xi   =   Σ ajt sijt

ait+1   =   1 / (1 + e-αxi)

where ajt is the neuronal activation of neuron j at time t (the beginning of this time step), sijt is the
synaptic efficacy from neuron j to neuron i at time t, ait+1 is the neuronal activation of neuron i at time
t+1 (the end of this time step), and α is a specifiable logistic slope.

The synaptic efficacies are then updated according to a Hebb rule, as:

sijt+1   =   sijt   +   ηckl (ait+1 - 0.5) (ajt - 0.5)

where sijt+1 is the synaptic efficacy from neuron j to neuron i at time t+1, and ηckl is the learning rate
for connections of type c (e-e, e-i, i-i, or i-e) from group l to group k.  An optional multiplicative decay
term may also be applied to the synaptic efficacy.

This simple “summing and squashing” neuron and Hebbian update rule are certainly coarse
abstractions of the complexities observed in real neural systems.  Credence is lent to these particular
abstractions by the previously quoted simulation work of Linsker, Pearson, and others, and by
Linsker’s and others’ information-theoretic analytical work on such systems, which suggest that they
may capture the information-processing attributes of real neural systems, if not their precise method of
action.  These neuronal and learning models were selected for use in PW based on these results and the
models’ computational tractability.
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During the course of a simulation, neural and synaptic activities may be monitored for a number
of organisms in the world (the top five “fittest”, according to the ad hoc fitness function discussed
earlier, even if it is not being used to create new organisms).  A few examples are shown in Figure 2.

Early simulations with PW had much simpler, fully recurrent neural architectures.  Though not
particularly representative of real biological neural architectures, acceptable behavior strategies were
evolved, and some of the results being presented are from organisms using these early networks.

7. Vision

The color vision supplied as input to the organism is first rendered at the minimum window size
permitted on the Iris + 1 (because even-sized buffers can be accessed faster), or 22 x 22 pixels.  The
pixel row just above vertical center is then properly anti-aliased into whatever number of visual neurons
an organism has.  Even though organisms and the environment of PW are three-dimensional, the
organisms’ vision consists of just this one-dimensional strip of pixels, rather than the complete pixel
map.  Since the organisms are confined to motion on a ground-plane, it was felt that the benefit derived
from computational efficiency outweighed the small loss of information resulting from this restriction.

As was discussed above in the Genetics section, the number of neurons devoted to each of the
color components is evolved independently (though they are adjacent on the genome, and so may tend
to crossover together).

As is indicated in Figure 2, an organism’s vision is shown in the display of the brain internals
that may be invoked interactively for some of the “fittest” individuals.  In addition, the full 22 x 22
pixel map for each of the organisms is usually displayed at the top of the screen.  This is mostly for a
“reality check”—visual reassurance that the organisms are seeing what they would be expected to see,
and may be disabled for a slight speed gain.

The vertical field of view of the organisms is fixed at 10o, since they only see a strip of pixels
just above the center of the image.  Their horizontal field of view, however, is under their own
“volitional”, neural control.  That is, the activation of the focusing neuron is mapped between a
minimum and maximum field of view (typically 20o to 120o).  In principle, this might permit some
depth of field determinations based on cyclic focusing operations, though it’s highly doubtful that
anything so sophisticated could emerge in the limited neural systems employed by the organisms so far.

This type of direct perception of the environment should answer one of cognitive psychology’s
most frequently sounded complaints against traditional AI:  The organisms of PW are “grounded” in
their environment by their sense of vision.

8. Behavior

A suite of primitive behaviors is made available to all organisms in PolyWorld, namely:

• eating
• mating
• fighting
• moving
• turning
• focusing
• lighting

All of these behaviors are expressed by raising the activation level of a prespecified neuron in
the brain.  Given computational constraints, it was felt that a minimum number of cycles should be
devoted to motor activity, hence this simple one-neuron-one-behavior mapping.  The first three
behaviors, eating, mating, and fighting, all have some associated threshold that must be exceeded
before the activity is initiated.  Energy is expended by each of the behaviors, including eating.  The
energy expenditure rates are controllable by scale factors (see Physiology and Metabolism) in the
“worldfile” (see The New Context).

Eating is an organism’s method for replenishing depleted energy stores.  In order to eat, an
organism’s position must cause it to overlap a piece of food.  The amount of energy consumed is
proportional to the activation of the eating neuron, once that activation exceeds a specifiable threshold.
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Mating is an organism’s method for reproducing.  In order to reproduce, an organism’s
position must cause it to overlap another organism, and both organisms must express their mating
behavior in excess of a specifiable threshold.  The outcome of the reproductive attempt may be affected
by the miscegenation function (see Genetics), or by the maximum number of organisms permitted in
the world (see The New Context).  The organism’s “desire” to mate (the activation level of its mating
neuron) is mapped onto its blue color component for display purposes; this coloration is visible to other
organisms as well as to human observers.

Fighting is an organism’s method for attacking another organism.  In order to successfully
attack the other organism, the attacker’s position must cause it to overlap the attackee.  Only one
organism need express its fighting behavior to successfully attack another.  The energy that is depleted
from the prey is a function of the volitional degree of the attack (the activation of the predator’s fight
neuron), the predator’s current health-energy level, the predator’s strength, and the predator’s size.
The product of these contributing factors from the predator is scaled by a global attack-to-energy
conversion factor to make the final determination of the amount of energy actually depleted from the
prey.  If both organisms are expressing their fight behavior, the same computation is carried out
reversing the roles of predator and prey.  Note that while this system of fighting/predation will permit
every extreme of interaction, including the equivalent of an ant attacking an elephant (or the equally
pointless act of an elephant attacking an ant for food), such actions will be of an evolutionarily-useful,
survivability-enhancing value comparable to those same ridiculous examples of real world behavior.  In
addition, since the level of expression of this behavior is under the volitional control of the organisms’
nervous systems, a full spectrum from complete pacificity to uninterrupted fighting is possible (and
exhibited in the “dervishes” species discussed in the Results section below).  Each organism’s desire to
fight is mapped onto its red color component for display purposes; this coloration is visible to other
organisms as well as to human observers.

Moving refers to an organism’s forward motion.  Unless an organism encounters a barrier, or
the edge of the world, it will move forward by an amount proportional to the activation of its moving
neuron.

Turning refers to a change in an organism’s orientation on the ground-plane (yaw).  An
organism will turn about its vertical axis by an amount proportional to the activation of its turning
neuron.

Focusing refers to an organism’s control over its horizontal field of view.  As discussed in the
Vision section, the activation of an organism’s focusing neuron will be linearly mapped onto a range of
possible angles to provide its horizontal field of view.  This makes it possible for an organism to use its
vision to survey most of the world in front of it or to focus closely on smaller regions of the world.

Lighting refers to an organism’s control over the brightness of a cap of several polygons on the
front face of its “body”.  The activation of an organism’s lighting neuron is  linearly mapped onto the
full 0 to 255 brightness range in all color components of these front polygons.  Accordingly, a simple
form of visual communication is possible, in principle, for the organisms inhabiting PW.  (No evidence
of their use of this form of communication has yet been found nor sought to date, though evidence of
the organisms’ use of vision for controlling locomotion has been observed.)

9. The New Context

The “world” of PolyWorld is a flat ground-plane, possibly divided up by a few impassable
barriers, filled with randomly grown pieces of food, and inhabited by the organisms previously
described.

The number of organisms in the world is controllable by several means.  First, a maximum
number of organisms is specifiable, in order to keep the problem computationally tractable.  Second, a
minimum number of organisms is specifiable to keep the world populated during the early on-line GA
stage (see Genetics).  Finally, an initial number of organisms is specifiable to determine how many
individuals to seed the world with at the start of the simulation.

Food is grown at a specifiable rate up to a specifiable maximum number of grown food items.
The number of food items may be guaranteed to be kept between a specifiable minimum and maximum
food count.  Subject to this maximum, food is also generated as the result of an organism’s death.  The
amount of energy in a piece of food that is grown is randomly determined between a specifiable
minimum and maximum food energy.  The amount of energy in a piece of food resulting from the death
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of an organism is that organism’s food-value-energy (see Physiology and Metabolism) at death, or a
specifiable minimum-food-energy-at-death.

An arbitrary number of barriers may be placed in the world, which inhibit movement of the
organisms.  These can serve to partially or completely isolate populations of organisms, and as such
can contribute significantly to speciation (genetic diversity).  For reasons of computational efficiency,
they are typically placed parallel to the z (depth) axis, though this is not strictly necessary.

It is possible to manage the minimum, maximum, and initial numbers of organisms and food
items, along with the ad hoc fitness statistics, simultaneously for a number of different independent
“domains”.  These domains must be aligned parallel to the z (depth) axis, and typically, though not
necessarily, coincide with the divisions imposed on the world by the barriers.  This permits the
simultaneous “culturing” of completely independent populations when barriers extend the full length of
the world, or limits the spread of genes between domains to those resulting from actual movement of
organisms when the barriers are arranged so as to leave gaps for organisms to travel through.  If the
domain fitness statistics were not kept separately, then genes from one domain could migrate to another
domain by virtue of their global fitness during the start-up on-line GA phase.

It is possible to set a flag such that the edges of the world act as barriers (the usual), wrap
around, or aren’t there at all.  In this last case, PW’s ground-plane acts much like Braitenberg’s table
top, with organisms that move past the edge of the world dying instantly.

Various monitoring and graphing tools exist to assist in following the progress of a simulation
and in developing an understanding of the evolutionary and neural dynamics at work.  As was
mentioned earlier (in the section on Neural Systems and Learning), a display of the internal workings
of any of the five “fittest” organisms may be called up at any time.  In addition, a small window that
maintains an overhead view of the world will automatically track that same organism upon request.
This overhead window may also be zoomed in and out to follow the organism more closely.

Also available are graphic displays of the time histories of certain quantities of interest,
including:  (1) population sizes (overall and per domain), (2) the past maximum, current maximum, and
current average values of the ad hoc fitness function, (3) the ratio of the number of organisms “born”
(by mating) to the sum of the number of organisms born and created, and (4) the ratio of the difference
of food-energy in and food-energy out to the sum of these two values.  These last two items in
particular are important gauges of the course of the simulation.  Item (3) will start at 0.0 and asymptote
to 1.0 for successful simulations, in which at least one species has emerged with an SBS; it will peak
well below 1.0 for unsuccessful simulations.  Item (4) ranges from -1.0 to 1.0, and should asymptote
to 0.0, for a world where energy is conserved.  Three values are actually plotted for item (4):  (a) the
total food-energy, including the initial seeding of the world, which starts at 1.0 and should asymptote
to 0.0, (b) the average food-energy, excluding the initial seeding of the world, which starts at 0.0, and
rapidly becomes negative, but should also asymptote to 0.0, and (c) the current food-energy on a time-
step by time-step basis, which fluctuates rapidly, but should cluster around the average food-energy.

One additional display can graphically present the results of an analysis of the genetic variability
in the population.  All pairs of organisms are examined to determine the magnitude of the Hamming
distance between them in gene space, normalized by the maximum possible genetic distance between
two organisms.  These normalized distances are divided into as many distinct histogram bins as there
are vertical pixels in the graph, and pixel brightness is used to indicate how many pairs of organisms
fell into each bin.  A single column of pixels thus shows the distribution of “genetic separation” for the
entire population at a single point in time.  A new column of pixels is added each time the genetic
makeup of the population changes (each birth or death).  The result is a complete time-history of genetic
variability in the world.  This approach’s strength is that it is able to show such a complete temporal
evolution of population-wide genetic variability at a glance.  Its weakness is that by reducing genetic
differences to a single number, one cannot tell the difference between many genes that are only slightly
different and a few genes that are very different; nor is it possible, of course, to tell which genes differ.

All of the simulation control parameters and display options are defined in a single “worldfile”
that is read at the start of the simulation.  In addition, some of the display options can be invoked
interactively at runtime.

There isn’t space to go into many details of the code itself.  However, it may be worth noting
that it consists of about 15,000 raw (not compiled) lines of C++, and is entirely object oriented, except
for a single routine devoted to handling the organism-organism and organism-food interactions (for
reasons of computational efficiency).  The organisms, food, and barriers are maintained in doubly-
linked lists sorted on a single dimension (x).  This simple data structure has minimal maintenance
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overhead, yet rules out most non-intersections very well, and permits a sorting algorithm to be used
that capitalizes on the expected frame-to-frame coherency of organism positions.  It runs on a Silicon
Graphics Iris (to take advantage of its hardware renderer for all the vision processing), and uses a set of
object oriented C++ graphics routines (included in the line count above) that wrap around the standard
Iris graphics library.

The tools currently available in PW for tracking population histories, fitnesses, genetic makeup,
and so on, are primarily graphical, and exist largely for the purpose of monitoring the progress of the
simulation.  They exist more to help create intuitions than to support detailed quantitative analysis.  The
only exception to this rule is one particular measure of population-wide genetic diversity (the
normalized Hamming distance between all pairs of organisms, discussed above), which can be
recorded to a file on demand.  The current version of PW does not purport to provide a universal set of
tools for all the possible evolutionary biology and behavioral ecology experiments that one might wish
to perform with it; it is doubtful whether all such possible tools could even be imagined in advance.
This is one of the principle reasons that PW’s full source code has been made available, in the hopes
that anyone wishing to apply the PW simulation environment to a particular study could add their own
data-gathering and data-analysis tools.  And, hopefully, the object-oriented style used for programming
PW will make it relatively easy to add a new graphical analysis tool, or to put in hooks to capture the
precise data required for a particular study.  The author has provided his email address and is willing to
help interested researchers navigate in the code to help facilitate their research needs.  If time permits,
coding help may also be available from the author, and tools added for other studies will be integrated
into the baseline code.

10. Results:  Speciation and Complex Emergent Behaviors

Despite the variability inherent in different worlds, certain recurring “species” have occurred in
a number of the simulations run to date.  By “species” is meant:  groups of organisms carrying out a
common individual behavior that results in distinctive group behaviors.  Since the selection of these
behaviors are derived from the activity of their neural network brains, and the success of these
behaviors is partially a function of their physiologies, both of which are in turn based on the genome of
the organism, the behavioral differences may generally be traced to the organism’s genetic code.  Hence
these behavioral differences are representative of different genetic species.  No effort has been made to
date to quantify or uniquely identify the genetic differences between these species, due mostly to
constraints on the author’s time (PW is still very much a work in progress).  Examining potentially
subtle differences in thousands of genes (or tens of thousands in the older fully recurrent nervous
systems) will require some well designed and implemented graphical analysis tools (though some
thought has gone into just what such a tool might look like, no code has been written).  For now, these
ethological-level behaviors (one of the original motivations for building PW, recall) may be the best
way to begin developing some understandings and intuitions about the evolutionary dynamics possible
in such a system.

A simulation is considered “successful” if and only if some number of species emerge with a
Successful Behavior Strategy (SBS); these populations are capable of sustaining their numbers through
their mating behaviors, and thus organism creations cease.  The observational reports below only refer
to such “successful” simulations.  Accordingly, there are typically many tens to many thousands of
examples of any particular behavior, especially in the simpler, more homogeneous species, where all
members of the species exhibit approximately the same behavior, and where that species has usually
occurred in multiple simulations.

The first of these species has been referred to as the "frenetic joggers".  In an early simulation
without barriers, without a miscegenation function, and with borders that wrap around (essentially
forming a torus), a population emerged that basically just ran straight ahead at full speed, always
wanting to mate and always wanting to eat.  That particular world happened to be benign enough, that it
turned out they would run into pieces of food or each other often enough to sustain themselves and to
reproduce.  It was an adequate, if not particularly interesting solution for that world.  And without the
miscegenation function or any physical isolation due to barriers, whatever diversity was present in the
early world population was quickly redistributed and blended into a single species that completely
dominated the world for as long as the simulation was run.

The second recurring species has been referred to as the “indolent cannibals”.  These organisms
"solve" the world energy and reproduction problem by turning the world into an almost zero-
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dimensional point.  That is, they never travel very far from either their parents or their offspring.  These
organisms mate with each other, fight with each other, kill each other, and eat each other when they
die.  They were most prevalent in simulations run before the parents were required to transfer their own
energies to the offspring; the organisms of these worlds were exploiting an essentially free energy
source.  With proper energy balancing, this behavior was reduced to only an occasional flare-up near
corners of the world, where some organisms with limited motor skills naturally end up congregating,
sometimes for quite extended periods of time.  It turns out that the primary evolutionary benefit
associated with this behavior was the ready availability of mates, rather than the “cannibalistic” food
supply.  This was determined by completely eliminating the food normally left behind by an organism’s
death, yet still observing the emergence of such species.  Large colonies of these indolent cannibals
look from above like a continuous (non-gridded) version of Conway’s game of LIFE.

The third recurring species has been referred to as the “edge runners”.  These organisms take
the next step up from the cannibals, and essentially reduce their world to an approximately one-
dimensional curve.  They mostly just run around and around the edge of the world (system constraints
prevent them from falling off in most simulations).  This turns out to be a fairly good strategy, since, if
enough other organisms are doing it, then some will have died along the path, ensuring adequate
supplies of food.  And mates are easily found by simply running a little faster or a little slower, running
in the opposite direction, or simply stopping at some point and waiting for other runners to arrive (all of
which behaviors have been observed).  A form of this behavior persists even when barriers block
access to the rest of the world; organisms still sometimes congregate along any edges, including the
barriers.  It has been suggested [22] that this may be a form of behavioral isolation, permitting this
species to retain its genetic identity to the exclusion of other species.

Another species recently emerged as the first evolutionarily stable solution to a Braitenberg-
style, “table top” world—one with deadly, drop-off edges.  These “dervishes” evolved a simple rapid-
turning strategy that kept them away from the dangerous edges of the world, and yet explored enough
of the world to bring them into contact with food and each other.  While this basic behavioral strategy
persisted for many hundreds of generations, the dervish populations continued to explore optimum
degrees of predation, in a sort of continuous prisoner’s dilemma over optimum degrees of cooperation.
Indeed, largely uniform behaviors (as indicated by the organisms’ coloration) in whole sub-species
were suggestive of a Tit-For-Tat strategy;  even though variations in predation were being introduced
into the communities from their peripheries (or through mutation), whole populations soon tended to
adopt the same basic behavior patterns.  Waves of varying levels of expression of this fighting behavior
could be observed sweeping through several distinct populations, with the greatest variation in
behaviors clearly seen at the boundaries between these populations.

The most interesting species and individuals are not so easily classified.  In some worlds
individuals’ behaviors have been so varied as to preclude any obvious classification into distinct
species.  In other worlds there appear to be multiple distinct species, with no single species obviously
dominating.  It is especially in these simulations that a number of complex, emergent behaviors have
been observed, including:

1) responding to visual stimuli by speeding up,
2) responding to an attack by running away (speeding up),
3) responding to an attack by fighting back,
4) grazing (slowing upon encountering each food patch),
5) expressing an attraction to food (seeking out and circling food), and
6) following other organisms.

The first item is important in that it implies that conditions have been found that will cause
evolution to select for the use of the organisms’ vision systems.  All four of the earlier, simpler species’
behaviors would be appropriate even if these vision systems did not exist.  Yet PW was built on the
assumption that vision would be a powerful, useful sense mechanism that evolution could not fail to
employ.  Even a simple speeding up in response to visual stimulation could result in reaching food or a
potential mate more effectively, and this was the first observed visual response to emerge.

The second and third items both represent reasonable responses to attack by a predator.  Fleeing
may reduce the effect of the attack, and fighting back is an energy-efficient use of the organism’s own
ability to fight (as opposed to expressing the fight behavior continuously which would expend
unnecessary energy).
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Strategies four and five represent efficient feeding strategies.  As simple a survival skill as
grazing might seem—to simply notice when one’s internal energy is going up, and cease moving until
it stops going up—it was not observed in early simulations.  It is still not a wide-spread phenomenon,
though a few instances have now been observed.  Only the most recent simulation, as of this writing,
has given rise to a population of organisms that seem to be able to actively seek out food and “orbit” it
while eating; such “foraging” is clearly a valuable survival trait.  These organisms appear to be drawn
to the food as if there were a magnet or some point attractor located in the food and controlling the
organisms’ behavior, though no such mechanism exists in PW.  Their attraction to the food is purely a
result of selection forces acting on the neural architecture connecting their vision systems to their motor
systems.

The final, “following” strategy has also emerged only in this most recent simulation.  Clearly of
value, whether for seeking a prey or a mate, this represents the most complex coupling of the vision
sense mechanism to the organisms’ motor controls yet observed.  Small “swarms” of organisms, and
one example of a few organisms “chasing” each other were even suggestive of simple “flocking”
behaviors.  The “swarm” appears to be a fairly stable formation, persisting for as long as it could be
observed in the particular simulation.  Having observed the driving forces in the simpler species in PW,
this can be reasonably well understood:  By staying within the swarm, reproductive partners are readily
found (as with the “cannibals”), yet the swarm drifts, allowing its members to find new food sources
as the old ones are depleted (more like the “dervishes”).  To achieve this limited “flocking” or
“swarming” behavior, an attraction to other bright (or moving—the neural architectures of these
organisms have not been analyzed, and most definitely should be) objects is all that is required.  As
with the foraging behavior, this attraction is mediated exclusively through the action of natural selection
on the organisms’ nervous systems.

Except for the last two behaviors, all of the species and behaviors discussed in this section have
been observed in multiple, distinct simulations.  And these final two behaviors are exhibited by tens or
hundreds of organisms in the single most recent simulation in which they occurred.

All of these behaviors, being inherently temporal phenomena, require some sort of temporal
medium for display.  Short video clips of most of the above species and behaviors should be available
in a companion videotape released by the publisher of this book.

The various species and individual behaviors discussed in this section are necessarily snapshots
of a moving target.  The PW code has undergone almost continuous development throughout the period
of time covered by the simulations discussed above.  In particular, and probably significantly, the most
complex “foraging” and “following” behaviors were never observed in organisms based on the older,
fully recurrent networks.  It will not come as a surprise to anyone with even the most limited
knowledge of neurophysiology that the architecture of an organism’s nervous system is vitally
important.  The arbitrary neural architectures of the most recent versions of PW appear to offer
significant advantages for exploring the space of “useful” nervous systems.  And though it would be
difficult for anyone, the author included, to reproduce precisely many of the early simulation results
(though snapshots do exist of the code in various stages of development along with the “worldfiles”
that generated all of the organisms discussed here), it should be quite straightforward for anyone to
reproduce the more significant and interesting later results, since both the source code for PW and the
worldfiles that define the starting conditions for these simulations have been made freely available (see
Future Directions below).  (Many hours of videotapes and sometimes detailed, sometimes sparse,
scientific journals also exist for most of these simulations.)

11. Discussion

Real benefits have already begun to accrue from the studies of artificial neural systems.
Meanwhile, the study of artificial evolution—genetic algorithms—is yielding insights into problems of
optimization, and into the dynamics of natural selection.  One form of the study of Artificial Life is the
perhaps obvious combination of these two fields of research.  Adding computer graphics visualization
techniques yields the basic substrate of PolyWorld.

One of the primary goals set out for PW has already been met:  the evolution of complex
emergent behaviors from only the simple suite of primitive behaviors built into the organisms of PW,
their sense mechanisms, and the action of natural selection on their neural systems.  These recognizable
behavioral strategies from real living organisms, such as “fleeing”, “fighting back”, “grazing”,
“foraging”, “following”, and “flocking”, are purely emergent in the PW environment.  And built as
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they are from simple, known primitive behaviors, in response to simple, understandable ecological
pressures, they may be able to remove a little bit of the mystery, if not the wonder, at the evolution of
such behaviors in natural organisms.

The simple but effective strategies evolved by organisms in the earlier, simpler simulations may
be valuable as sort of “null hypotheses” about certain forms of animal behavior.  In particular,
aggregation and wall-following amongst these simple organisms occurs without need for elaborate
behavioral strategies.  It is sufficient that corners and walls obstruct the simple trajectories of limited
motor skills.  Yet if enough organisms occupy these locational niches, it becomes a behavioral niche as
well, by providing readily available mates, and an easily achieved form of behavioral isolation.

It is, perhaps, easier to contemplate and understand these behaviors in the simulated organisms
of PW than it is in natural organisms, precisely because they are simulated.  The blessing and the curse
of Artificial Life is that it is much more difficult for humans to anthropomorphize (zoomorphize?
biomorphize?) these organisms in a machine than it is natural organisms.  This frees us from prejudices
and preconceptions when observing and analyzing the behaviors of artificial organisms, yet the most
highly motivated of ALife researchers is going to find it difficult to look at an artificial organism and
declare it unequivocally alive.

As more and more sophisticated computational models of living systems are developed, it will
be only natural to ask whether they are in fact really alive.  To answer this, however, requires a
resolution to probably the greatest unanswered question posed and addressed by the study of Artificial
Life:  “What is life?”  Farmer and Belin [16] offer an analogous question for consideration:  “If we
voyage to another planet, how will we know whether or not life is present?”  One might also ask:  If we
“voyage” to an artificial world, how will we know whether or not life is present?  In a tentative first
step towards trying to answer such a question, Farmer and Belin offer a set of “properties that we
associate with life”.  Here is a brief analysis of how well the organisms of PolyWorld meet these
criteria:

• “Life is a pattern in spacetime, rather than a specific material object.”
By this, Farmer and Belin mean to point out that even a specific living organism is really the

process (that persists), rather than the nutrients or specific chemical constituents in which that
process is embedded (which typically do not persist).  Inherent in this observation is that the
process may very well be taking place in something quite different than the traditional hydro-
carbon chains associated with biological life (BLife).  PW organisms are indeed patterns in a
computer, rather than any traditional substrate.  And as with BLife organisms, in order to
persist they extract nutrients from the environment which, while necessary for life, are not the
process of life.  So PW organisms neither extend nor violate this first condition.

• “Self-reproduction.”
PW organisms certainly reproduce within the context of their world.  The initiation of their

act of reproduction is, akin to higher level BLife organisms, a result of the processing of a
moderately complex nervous system—a “volitional”, behavioral action.  The method of their
reproduction is dependent on the software genetics built into PW—the pseudo-physics and
-biology of PW.  This pseudo-biology is not itself an emergent property, but an assumed
capability.  Whether this, therefore, represents self-reproduction or not may be arguable.

Some might argue that the step-by-step process of reproduction itself must be wholly
contained within the simulated physics of an artificial world, perhaps in the manner of cellular
automata models, in order to qualify as self-reproduction, and that an assumed capability and
corresponding software mechanism for reproduction is too high a level of abstraction to support
real artificial life (though one might counter argue that the assumed, software physics of such
cellular automata systems are just as ad hoc a construction as these software genetics, just as
unreal, and that even if a model of real molecular-level chemical interactions were used as the
substrate, the physics underlying those interactions were ad hoc, and so on ad infinitum, until
we reach levels of sub-atomic physics that cannot be modeled, since they are not known).

On the other hand, all ALife systems for the foreseeable future must make certain
assumptions, and select levels of abstraction—levels of organization and complexity—at which
they will develop their models.  As Chris Langton puts it, they all must write an I.O.U. at some
level of detail.  The genetic code of PW’s organisms is, by design, in the system’s software
architecture, and the mechanism for combining—crossing-over and mutating—those genetic
codes, and then interpreting them as a new organism is also embedded in the software that
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defines PW’s physics and biology.  It is not obvious that organisms that evolve to exploit these
software reproduction mechanisms are any less alive than organisms that continue to evolve
characteristics and behaviors which, though represented there, are otherwise unrelated to the
biochemical mechanisms for the reproduction of DNA.  (A longer-necked giraffe is selected for
not because of the way its genes are copied, but because its longer neck offers a behavioral
advantage; a more intelligent ape descendent is selected for that intelligence, not for the method
of its genetic coding.  Though a non-evolving genetic code does significantly limit the open-
endedness of a simulation, only for organisms sufficiently primitive that the method of storing
and reproducing their genetic code is still being explored and optimized are these characteristics
an undeniably essential aspect.)  Nor is it obvious that a PW organism’s dependence on these
software reproductive mechanisms is any less lifelike than the dependence that an organism in
Ray’s Tierra has on a built-in copy instruction, or the dependence that a software virus has on a
computer system’s built-in duplication functions, or a biological virus’s dependence on existing
mechanisms for copying its host’s DNA.

Finally, a simulator may also be thought of as both the world context it creates and the
underlying software.  Even though the software was hand-crafted, rather than evolved, in a
very real sense it represents the fundamental physics and, possibly, the low-level biological
mechanisms of the simulated ecology.  If a simulated organism is thought of as the combination
of its simulated physiology, its simulated neurophysiology, and its real software, then even the
high-level, abstracted form of reproduction employed in PW might be thought of as self-
reproduction.  Whether this violates the spirit of Farmer and Belin’s criterion or not is unclear.

• “Information storage of a self-representation.”
PW organisms use an analog of the same storage mechanism Farmer and Belin mention for

natural organisms:  their genetic representation.  Here again, that representation is stored and
interpreted within PW’s software context, not directly within the resulting simulated world.
The representation itself cannot evolve within the current PW framework (though the author has
considered a number of alternative schemes for supporting this), and is not itself an emergent
property.  These limitations do not violate Farmer and Belin’s stated criterion, but do indicate
some constraints imposed on the system by its chosen level of abstraction.

• “A metabolism.”
A PW organism’s metabolism effectively converts food found in the environment into the

energy it needs to carry out its internal processes and behavioral activities, just as is the case in
natural organisms.  In PW’s current biochemistry,  there is only one type of nutrient required to
sustain life and permit reproduction of its organisms (though this needn’t be the case in later
versions of PW).  In contrast to Holland’s ECHO, for example, the single food type in PW is
converted directly to an energy that is available to all of an organism’s behavioral systems,
rather than accumulating in a reservoir of components until all the constituent elements are
available to support reproduction; given the existence of only a single nutrient type in PW, there
is little point in treating it otherwise.  But as with ECHO, sufficient quantities of this nutrient
must be available in order to support reproduction.  And in PW, the energy derived from this
nutrient is then expended through every action, as well as the neural processing, of the
organism; and the effects of one of those actions—fighting—is directly scaled by this available
energy.  So in some ways the metabolism of PW’s organisms is simpler than that in ECHO, but
in some ways it is more complex.  In any event, the metabolism in PW organisms is certainly
much simpler than the metabolism in biological organisms, but if the basic functionality is the
same, does the complexity of the underlying process matter?

• “Functional interactions with the environment.”
PW organisms certainly do interact with their environment.  Besides eating food and

expending the resultant available energy, they interact extensively with other organisms in the
environment.  In fact, as in BLife, the other organisms comprise the most important element of
that environment.  The more sophisticated organisms in PW respond behaviorally to changes in
the environment, and such responses are purely under the control of the organism.

• “Interdependence of parts.”
Following Farmer and Belin’s reasoning, PW organisms can and would die were they

somehow separated from their internal energy store.  And severing an organism’s brain in two
would not produce two organisms with behavior anything like the original.  As was discussed
in the Results section above, the most sophisticated behaviors in PW only emerged once the
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arbitrary neural architectures were implemented.  The particular clusters of neurons in an
organism’s brain and the precise pattern of connections between those clusters define that
organism’s behaviors; altering those clusters and their connections produces a different (and not
necessarily viable) organism.  Stepping outside the bounds of the simulation, they would also
“die” if their various procedures and data were destroyed or isolated.  In either case, half an
organism is no longer that organism, if it is any organism at all.

• “Stability under perturbations.”
PW organisms can survive small changes to their environment.  Indeed, whole species have

reemerged in entirely different simulations.  Again stepping outside the simulation, whole
species have emerged with and without any of a variety of errors in the code.

• “The ability to evolve.”
PW organisms clearly can and do evolve.  There are undoubtedly limits to their evolution;

e.g., they could not possibly evolve a sense of smell without programmer intervention.
However, all natural organisms we know of have limits to their evolutionary capabilities:  It is
highly unlikely that humans could evolve a steel appendage; if Einstein is correct, it is
absolutely impossible for them to evolve a method of personal locomotion that would exceed
the speed of light.  All organisms, natural or artificial, are bound by the physics of their
universe.  Similar to the question about metabolism, does the complexity of the underlying
physics matter?

So, with the above caveats, questions, arguments and counter arguments, it would appear that the
organisms of PolyWorld come surprisingly close to fulfilling Farmer and Belin’s set of criteria; indeed,
they may do so entirely.  Farmer and Belin probably would not argue with the conclusion that we need
to further refine our constraints on the definition of life.  It is unknown which side they might argue of
the knowingly contentious statement that we may already need to welcome a new genus to the world.

This issue of just what really defines life—what really is and isn’t alive—will continue to be
both a driving force and a thorn in the side of the field of ALife.  Some, including Chris Langton [28],
the father of the field, would argue that perhaps all of Farmer and Belin’s criteria must themselves be
self-organized.  It might also be argued that none of the above criteria are especially necessary or
appropriate:  Consider a hypothetical, Turing-certified, artificially-intelligent computer.  It might not be
able to reproduce itself.  It might not have a complete self-representation.  It’s metabolism would be no
more complicated than that of a PW organism, “eating” nothing but electricity.  It may not evolve.  Yet
if you could discuss Tolstoy and Terminator with it, if it understood the concepts of noblesse oblige
and the gentleman farmer, and if it, perhaps, shared some of your musical tastes... could you fail to
consider it alive?  But on the other hand, perhaps this argument unnecessarily conflates intelligence and
life.  Or, more damningly, perhaps, like Searle’s famous Chinese Room argument, it postulates an
impossibility to make its (therefore invalid) point.  Indeed, intelligence may only be achievable through
a process of evolution—through life, natural or artificial.  (Even if one could copy every nuance of a
human being’s nervous system into a computer, thus sidestepping computational evolution, the thing
being copied is itself the product of an evolutionary process.)

Tom Ray [40] has suggested that perhaps all of ALife research is really just modeling aspects of
life, rather than actually creating “capital-L” Life, and each effort, to a large degree, echoes the interests
and biases of the individual researcher.  Chris Langton’s Loops met his criterion at the time—self-
reproduction, even though their reproduction is that of a precise crystalline form which cannot evolve.
Ray’s Tierra organisms met his criteria too—self-reproduction and evolution, though their behaviors
are limited exclusively to the reproductive process.  PolyWorld’s organisms met their creator’s
criteria—reproduction, evolution, and ethological-level behaviors, though the intelligence of these
organisms is limited, at best, to that found on the lowest rungs of BLife organisms.  Perhaps
extensions to PolyWorld, or the next researcher’s ALife environment will successfully evolve more
intelligent, more obviously alive organisms.  Or perhaps Langton’s Swarm work—an eco-simulator
based on a multi-plane CA—will reproduce the higher-level behaviors of PolyWorld, but build them on
the lower-level physics of CA’s.  Curiously, man-made life seems almost easy to model, almost
impossible to accept as truly alive.

Ultimately, the resolution to this question of real life in artificial organisms may have to be
based on a consensus, as with Turing’s famous test for artificial intelligence.  Perhaps in this case,
however, the consensus of a knowledgeable and informed jury is needed, rather than that of Turing’s
unspecified, presumably average group of individuals.  As with the debate about the “aliveness” of
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natural viruses being properly resident with biologists, the question of “aliveness” in artificial
organisms is probably best argued by a combination of computer-aware biologists and biology-aware
computer scientists.

Still, researchers in this field seem to have a feeling that if you have a box of stuff, there really
ought to be a way to tell if something is alive in there.  The best approach may yet be an information-
theoretic one, harkening back to the suggestions of Von Neumann and Schrödinger that the crucial,
defining aspect of living organisms is that they are information processors—information-rich islands in
a sea of background information.  If, say, the ability to predict the chemical composition or electrical
charge or some other measure of state, in either the current location over time, or in adjacent locations at
the same time, were measured—at some scale—in a bounded volume, then perhaps we could use such
information measures to make an assessment of the amount, or degree, of life contained therein.  Or
perhaps if such a determination were made at a variety of scales within the contained region, living
things might stand out clearly from the non-living background by the manner in which their information
content scales.  But for now, no such quantitative measures (or even particularly cogent theories) exist,
so intelligent conjecture, argument, and opinion will have to suffice.

12. Future Directions

The various species and behaviors that have emerged in the different simulations suggest that
PW may be a rich enough simulation environment to pursue further evolutionary studies.  In particular,
a way of sort of “benchmarking” PW—the way one compares the results of a computational fluid
dynamics code to known analytical solutions for flow over a flat plate or a cylinder, or measured flows
over an airfoil in a windtunnel—may be possible in the form of optimal foraging strategies as studied in
the field of behavioral ecology.  A simple, canonical foraging experiment has been defined and
analyzed, and some preliminary simulations run in PW.  Agreement or disagreement with the analytical
model should be examined and understood.

The neural architectures that provide the most useful survival strategies should be analyzed and
understood.  It would also be fairly straightforward to encode an entire range of learning algorithms in
the genes of the organisms in PW, and attempt to evolve the most effective learning algorithm, rather
than assuming it to be Hebbian.  (Some consideration has even been given to the possibility of having
the fundamental genetic representation of information—the genetic code—evolve.)  At least it might be
worthwhile implementing cluster-to-cluster initial connection strengths, initial connection strength
variances, and maximum connection strengths, to begin to hint at distinct cell types.  Or it may be more
worthwhile to jump directly to a more sophisticated cell model, capable of capturing the actual temporal
dynamics of spike trains rather than average firing rates.

Though the statistical approach to the specification of neural architectures currently employed in
PW can, to a certain extent, finesse the need for an ontogenetic, developmental process, this is felt to be
one of the most potentially valuable directions for future ALife work.  A richer, more biologically-
motivated developmental process might provide as significant an improvement in the process of
searching the space of evolutionarily useful neural architectures as the current scheme did over the
fixed, fully-recurrent networks.  An ontogenetic process for the organisms’ neurophysiologies (and
physiologies) might serve both to smooth the fitness landscape and, occasionally, to introduce useful
cliffs in that landscape, as it is conjectured to do in natural evolving systems.  And the converse may
also be true; PW may be a very effective testbed for alternative ontogenetic theories and algorithmic
models of development.

More environmental interactions should be supported, including the ability for the organisms to
pick up, carry, and drop pieces of food, and perhaps even pieces of barrier material.  This should yield
useful reasons for organisms to cooperate, other than simply to reproduce.

The simple metabolisms dictated by the current use of a single type of nutrient could readily be
replaced with a more complex biochemistry.  Multiple nutrients distributed amongst multiple food types
would make for a considerably richer environment.  (Even the potentially substantial impact of ordered,
rather than random, food growth has yet to be explored.)  It might even be feasible to incorporate a
simple set of internally consistent chemical reactions, with appropriate energetics, catalytic
relationships, and so on.

Though not discussed in the earlier parts of the paper, the gross energetics of the system have
been observed to be crucial to the evolution of successful survival strategies.  Mirroring the differences
between energy-rich tropical zones and energy-starved polar zones in our one known, natural
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ecosystem, artificial life flourishes in energy-rich simulations, and languishes in energy-starved
simulations.  Perhaps someday it may be possible to make useful predictions about viable ranges of
energy flux for natural systems from artificial ecologies like PW.

A quantitative assessment of the degree to which the isolation of populations affects speciation
may be possible with PW.  Some tentative first steps have already been taken in this direction, though
questions remain about the most appropriate comparisons to make and the appropriate times at which to
make these comparisons. This coupled with the problems associated with assuring the emergence of an
SBS in every population, and the simple magnitude of processing time required to perform the
simulations has delayed a complete series of experiments of this nature.

There are thousands of other interesting experiments that one might perform with this system,
including:  Monitoring brain size in otherwise stable populations, such as the "dervishes"...  are smaller
and smaller nervous systems actually being selected for?  Monitoring the frequency and magnitude of
attacks on other organisms as a function of their genetic (dis)similarity.  Monitoring the amount of
energy given to offspring in a single species... is there any indication of an asymmetric split into
different relative contributions?  Hand-tailoring a good neural architecture or two and seeding the world
with these engineered organisms.  Providing multiple internal, neural time-cycles per external, action
time-cycle.  Evolving three completely independent domains of organisms, with barriers in place, and
then removing the barriers to observer the interspecies dynamics.  It may even be possible to model the
entire population of Orca whales that frequent the waters around Vancouver, and look for an
evolutionary split into pods that travel little and eat essentially stationary food sources versus pods that
travel widely and feed on fish, a very mobile food source.  And on and on.  In hopes that others may
find PolyWorld to be a useful tool for exploring these kinds of questions, it has been made available via
ftp from ftp.apple.com (130.43.2.3) in /pub/polyworld.  Complete source code and some sample
"worldfiles" are provided.

In a more fanciful, and perhaps more visionary vein, it is hoped that, someday, one of the
organisms in PolyWorld that demonstrates all the survival behaviors observed to date, plus a few
others, could be transferred from its original environment to, say, a maze world, and become the
subject of some classical conditioning experiments.  Klopf’s [24,25] success at demonstrating over 15
classical conditioning phenomena in a single neuron using differential Hebbian learning (he called it
“drive-reinforcement” learning), strongly suggests that such phenomena should be demonstrable in
PolyWorld’s organisms.

And then, of course, there is simply “more, bigger, and longer”:  more organisms, with bigger
neural systems, evolving longer.  As a gedanken experiment, consider just how much “more, bigger,
and longer” might be useful:  The current 3x102 organisms, 3x102 neurons, and 103 generations
(approximately), could be expanded to 106 organisms, neurons, and generations, through an increase
in compute power of about 1010.  (Though this sounds like a tremendous increase to ask for, consider
that the current simulation is running on a single, scalar workstation processor, not a vectorized,
massively parallel processor, then extend today’s trends in compute power, and this ceases to be such a
daunting request.  Also, the compute power needed to model quite complex organisms may be
significantly less than this due to the greatly reduced motor and autonomic nervous systems that would
be required by artificial organisms.)  By coincidence, it turns out that this is a fairly reasonable amount
of compute power with which to consider modeling a complete human brain—basically devoting one of
today’s fast computers to every neuron—but no one understands how to actually construct such an
artificial brain.  However, this same amount of compute power might be used to evolve the equivalent
of several new species of computational lab rats every week... and this is how:  by combining
evolution, neural systems, and ecological dynamics.

If there is any question about why one would wish to pursue these research directions, it is
always possible to point to the benefits to be derived in the evolutionary, ecological, biological,
ethological, and even computer science fields.  But it may also turn out to be the only “right” way to
approach machine intelligence.

One view of intelligence is as an evolved, adaptive response to a variable environment, that due
to historical constraints and opportunism on the part of nature happens to be based upon neuronal cells.
One might further recognize that intelligence is actually a near-continuum—a spectrum from the
simplest organisms to the most complex—rather than some singular event, unique to human beings.
Then, by utilizing both the method—Natural Selection—and the tools—assemblies of neuronal cells—
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used in the creation of natural intelligence, PolyWorld is an attempt to take the appropriate first steps
toward modeling, understanding, and reproducing the phenomenon of intelligence.

For while one of the grand goals of science is certainly the development of a functioning human
level (or greater) intelligence in the computer, it would be an only slightly less grand achievement to
evolve a computational Aplysia that was fully knowable—fully instrumentable and, ultimately, fully
understandable.  And perhaps it is only through such an evolutionary approach that it will be possible
to provide the important milestones and benchmarks—sea slug, rat, simian,...—that will let us know
we are on the right scientific path toward that grander goal.
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Figure 1.  Screenshot of the PolyWorld ecological simulator populated by
several related but distinct sub-species of “Dervishes” (see Section 10,
Results:  Speciation and Complex Emergent Behaviors).  The largest panel
shows a broad view of the world:  the dark green ground plane, the brown,
impassable barriers, the bright green pieces of food, and the multicolored
organisms.  Just above this oblique world view are four graphs of various
simulation parameters.  Above these, at the top of the figure, are many small
views of the world drawn from the point of view of each of the organisms in
the world; these are the images seen by the those organisms.  At the top right
are a few numerical statistics describing the simulation.  And in the bottom
right pane is a zoomed-in, close-up view of the current “fittest” organism.
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Figure 2.  Three sample neural architectures evolved in PolyWorld.  Gray-
scale is used to denote neural activation (between 0.0 and 1.0) and synaptic
efficacy (between -maxEfficacy and +maxEfficacy).  At the very bottom of
the grid is the color vision buffer.  The neural activations at the beginning of
this time step are shown in a horizontal row just above the color vision, along
with the red, green, and blue input neuron activation levels, and the energy
and random input neuron activation levels.  White frames are drawn around
each neuronal group, except for the vision neurons which are framed in their
corresponding color.  Black frames are drawn around each synapse, hence
the unframed areas are regions of null connectivity.  Synapses that appear
brighter than the neutral gray background are excitatory; those that appear
darker than the background are inhibitory.  The leftmost vertical bar shows
neuronal biases.  The non-input neural activations at the end of this time step
are shown in the adjacent vertical bar; again, neuronal groups are framed in
white.  Hence the diagram may be read as an incomplete crossbar connecting
the neuronal states at the beginning of the time step (horizontally) to those at
the end of the time step (vertically), through the various synaptic connections.

25


