
'

Systems Guide to fig -Forth
C:.. t-.1, Tlng ~

' .

FirlST EDI LI 01;

SECOKD Pd. I:. Trt:G

OIFITI IHTIIPRISIS, INC.

1986

I
1

1

I
I
J

I
I
l

Systems Guide
to fig -Forth

C. H . TING. PHD

FIRST EDITION

01mr INTIRPRISIS, INC.

Copyright, 1980, 1981 by c. H. Ting

Zero Edition, November 1980

First Edition, June 1981
April 1982

(First Printing)
(Second Printing}

**

All rights reserved. This book, or any part

thereof, may not be reproduced in any form

without written permission from the Author.

**

Printed in the United States of America

by

01/ete Ecte'f.fstei4e4. 1ce.
1306 SOUTH ' '8" STREET

SAN MATEO, CALIFORNIA 14•02

TEL . t•Hil 5H.a260

I
1

I
1

l

ftlRI'P. was developed cy Chades Moore in the 1960 1 s. It tod< the

final form as we now knew it in 1969, when 11r. Moore was at the National

Radio Astronat!i Qlservatcxy, Chadottesville, va. it was creatED out of his

dissatisfaction with available prcgramm:ing tools, esp:cially for instrument

ation control a."'ld autanation. Distril:ution of his work to other ot:serva tor

ies has made FOR'IH the standard larguage for ot:serva tory autanation. Mr.

Moore and several associates forned FOR'lE, In:. in 1973 for the purpose of

licensing and support of the FOR'lH q:erating systan and prcgrcmning lal'l3-

uage, and to supply application software to meet custaners 1 unique requir~

ments.

Forth Interest Group was forned in 1978 by a group of FOR'IH pro;r~

mer in Northern cal.iforni. a. It is a non-profit organization. Its purpose

is to encourage the use of FOR'IH larguage by the interchaJ13e of id:as

through seminars and publications. It organized a Forth IJrplementation Team

in 1978 to develop FOR'IE ~rating systans for popular microtr co:ssors fran

a common language model , row known as f ig-FORI'H. In early 1979, the Forth

Implenentation Team publishED six assenbly listings of fig-FORl'H for 8080,

6800, 6502, PDP-11, 9900, and PACE at $10.00 each. The quality ana avail

ability of these listings, which are placed in the public cbnain, made fig

FORrB the most p:>pul.a r dialect in FOR'lH.

i

Most of the p.lblished materials on FORl'H are manuals which teach

how to use a ~rticular FOR'lH implenentation on a ~rticular canpl:Cer. Ve:y

few deal with the inner mechanisms on how the FOR'lH systan ot:erates which

is essential to the undetstan::Jing and effective utilization of the FOR'lH

language. r-1y intention here is to des<% ibe how the FOR'lH systan ci:>es all

these woroerful things no other lan;uage can. With a deepar understaming

of the inner mechanism, a user can hare a better ap{Xe:iation of many unique

features which make FOR'lH such a powerful pro;rarmnmg tool.

Alrong other things, docl.llientation on FOR'lH is very difficult to

read and to comprehero because FOR'lH def :ini tions are short aro their n\.11\bets

are many. The defwtions are very hard to arrarge in a logical order

to proroote better or easier undetstaming. For exarrple, the glossary is

arranged alphabetically, which is great for referen<l! purposes. If you knCM

which definition ycu are locking for, ycu can find it very COBTeniently in

the glossary, blt how the definition is relata:l to others aro how it is to

be used are not easy to find. The source codes, coded in FOR'lH , are also

difficult to comprehero because the def wtions are ordera:l fran botton up,

i.e., low level definitions must pre:ea3 the higher level defwtions using

the low level definitions. I will not mention the pr:d::llans in reading

codes written with post£ ix notations. 'nlese are prd::llems for which FOR'!H is

often criticized. . A bock on the systans asP!Ct in the fi<rFORI'H McxJei can

help progranmers to clin'b the leaming curve aro ease sanewhat the growing

pain in learning this very strarge larguage.

ii

)

J

1

I
J

I
J

In this book I will attemt:C to explain the c:peration of fig-FOR!'H

system in a systenatic fashion. The top level FOR'IH definitions related to

the system operations are treate:J in logical sequences. Mcst of these

definitions are definEd in terns of other p:ErlefinEd FOR'IH definitions:

therefore, it is require:J that the reader has sane basic kna.11edge of the

elements contained in the FOR'lH language, sud"l as the dictionary, the data

stack, and the return stack. Bawever, ~'lH la.n;uage is strutture::l an:l

modular, so that the logical a>ntents of a definition are not difficult to

grasp if the flnctions of all the low level definitions involwd are cleady

stated.

Because of the modular structures imerent in the FOR'lH language,

the definition of a FOR'lH wcrd itself is a fine vehicle to a>mey its

fll'lctionings. In fact, the definition can be used in lieJ of a flow chart.

In the following discussions, a FOR'lH definition will be laid in a vertical

format. 'Dle cxmponent definitions will be written in a colurm at the left

hand side of a 12ge, and the carurents am ellplanations wi ll be posi.tionErl in

columns toward the right hand si&. When a group of words of very close

relationship or a P'lrase apt:ears, th~ nay be displayed in one line to save

Sp3Ce.

Many FCRl'H words are defined in mcchine codes. '11'ley are called c:oOe

definitions or primitive definitions and th~ are the tody of what is calleO

the • virtual FCR'lH machine ". These definitions are used to a>mert a

iii

particular (l)U into a FORI'H computer. The detailed contents of these wcrds

cannot be discussed without resorting to the assanbly la.n;uage of the host

<l'U, and we shall avoid their discussion as much as possible. In the cases

where it is al::solutely necessary to use them in order to clarify how the

system ftnctions, the fi~FORI'H PD~ll coees will be used because the ID~ll

instruction set is very close to what is requirED ot:timally to inplanent a

virtual FORrH computer.

The detailed definitions of FOR'lH words wil~ strictly adher~ to

those defined in the fi~FORI'H model as presentED in the fi~FORTH Instal

lation Manual. This model is the rost canplete and consistent dxlJilentation

defining a FORl'H lan;uage systen which has been irrplenented in a host of

microcomputers. The FOR'lH q:erating systen written in FOR'lH ~OJi<:Es the

best exanples for the serious stu<Ents to learn the FOR'lB lan;uage. Mast

of the progranrning tools prOJi<:Ed by the FOR'IH systen were develot:e<] to

code the FORI'B system itself. By going through the FOR'lB systen carEfully,

a FORrH user can leam rrost fr<:gramming te:::hniques supporte:l by the FOR'lH

language for his own use.

In Olap:er 1, I try to lay down the formal definition of FOR'lH as a

progranming language. It was canpletED only very re:::ently, after all other

chapters were done. Sane tetnS used in Olapter 1 are not quite consistent

with those used in the later chapters. The terms 'wcr d' , ' definition' , and

'instruction' are used interchan;eably in later chapters are differentiatErl

in Olapter l. Chapter 2 is an overview of the fig-FORI'H q:erating systan.

iv

l
l In the rest of the book, each chapter will d.iell on a particular area in the

rattB systen. The more inportant definitions at the hic;hest level, \1/hic..lj

the user will use most often are discussed first to give an overall view

of the tasks involved. The low le.rel definitions or utility definitions

used in the high le.rel definitions are then discussed in 6etail to canplete

the entire picture. Oeser ipti ve cx:mnents will be given for the low level

definitions when they ap~ar in a high level definition before they are

canpletely defined. 'Iherefore, it will be helpful to reread a chapter

so that the knowledge gained by studying the utility definitions can further

illuminate the high level definition outlining the task involved.

Special thanks are due to Willian F. Ra~dUe, who authore::l the fig

FQttB Installation Mamal and guices the Forth Interest Group fran its

inception, to Jctm S. Ji!llles, who develo~ the FDP-11 fig-FORrH and the IDP-

11 Assembler, and to Jd'U'l cassady, who develo~ the 8080 fig-FORl'H and the

8080 Assembler. Thanks are also dlE to Rd::>ert Downs, Anson Averrel.l, Alice

Ferrish and Albert Ting, 'Who kindly gave me lon; lists of ex>rre:tions a.rrl

made many helpful suggestions on the manuscript.

v

Sen Mateo, ca.

May, 1981.

SYS'I'n1S GUIDE '.ro fig-FORrH

CXNl'EN'IS

PREFACE

1. LAN:;UAGE IEFINI TION OF roR'lH l

Programning Lcnguage 3
Words 4
Stanada.rd Instructions 8
User Instructions 9

Structures and Colon Instrud:ions 12
Code Instructions 15
Cmstants, Variables, and Vcx::abulacy 17

I Create Oef ining Instructions 18
Cxlclusion 22

1
2. fig-FCRJ.'H: .AN OPERATIN:; SYS'l'EM 25

Memory Map 27
Instruction Set 30
System Ccnstants and User Variables 35
Simple Colon Definitions 37

3. TEXT lNTERPR~ 39

COLD 4l
ABCRI', QUIT 42
INl'ERPR£.l' 43
X 47

4. 49

NEXT, EXEXlJTE 52
OOCDL 53
1S 54
POSH, FOP, PUT, LIT 55

5. CXl-tPILER 57

[57
] 58
cm:ATE 59
Q)DE 62 . 62 . . 64 I

vi

6.

7.

a.

9.

10.

?ERRCR
EBRCR, (ABORI')
MESSAGE, ?CCX1P
?EXEX:, ?PAIRS, ?CSP, ?LClADI N:i
?STH::K

TWIINAL Th"PUI' ~D ClJTPUI'

EXPECI'
QUERY, WCIID
'r.{PE

CQJNr
-'lRAILIN:; .· , {.")
ID.
.LlNE, {LlNE)
LISI'

RJf.ERIC CXlNERSIONS

HEX, cc:rAL, DEX:IMAL
(Wr-BER)
Wl-BER
<I
OOLD, t
IS, SIGN, t >
~, smcE, smas
D. R, D.
.R, • , ?
WMP

DICI'IONARY

HERE, M.LC1r, ' , I
1 C, I , -FIND
\.lCO\BUIJ!R y
DEFINITIONS
'rnA VERSE
LFA, CPA, NFA, PFA
LATEST, '
FORGe!'
VLIST

VIRTUAL MEM:)RY

BLOCK
+WF, BUFFER

vii

65

65
67
68
69
70

71

71
74
77
78
79
80
81
82
83

85

85
86
88
89
90
91
92
93
94
95

97

98
99
101
102
103
104
105
106
107

109

ll2
115

I
P/W 116

l UR>ATE 117
EMPI'Y-BUFFERS I ORO 118
IIU, FLUSH 119
Ui\0 120
- > 121

11. DEFININ:; WCRn5 PND 'lHE CDDE FIELD 123

JO)DE 126
(;CODE) 127
<BUII.JlS I OOES > 128
a:Nsr;.m 129
WP..IABLE 130
lEER 132

12. CXN'mOL STRUc:ruRES MD IMMEDIATE \'l)RDS 133

CCJ1PILE 135
[CCJ.lPILE] I BPANQ1 136
OBPAN<li 137
IF, ENDIF 138
ELSE 139
B&;IN, BPCK 140
UNrn. I AGAIN 141
WHILE 142
REPEAT 143
00 144
(00) I I I LEAVE 145
l.C(P I (I.OCP) 146
+LCXP I (+LCX:IP) 147

13. EDITOR 149

I
TEXT, LINE 152
-l-OVE, B I s 153
D , E 154
R , P , I 155

I CLEM, CDPY 156
MA'roi 158
-'!EXT, 2DROP 159

I
200P, 2SNKP, 'IDP 160
t~TE, tLEAD 160
fLAG, M 161

1

T , L , lLINE 162
FIND, DELETE 163
N I F , B , X 164
Tn..L, c 165

I 14. ASSEMBLffi 167

I
PDP-11 ~SE:MBLm 172

viii

INDEX

ENTERCX)DE, <XDE
IS, Rl'ST
OP
lOP, FDM>DE
ORMDDE, ,OPERAND
B , ROP
BOP
20P
g.;p.rop
IF,
!PATCH, , ENDIF, , ELSE,
BEGlN, , UNl'IL, , REPEAT,
WHILE, , C;
NEXT,

8080 ASSEMBLER
CODE
C; , LABEL
8* , IS
1MI, 2MI
3MI, 4MI
SMI, MJV
MVI, LXI
ror, IF
ENDIF, ElSE, BEGlN
UNI'IL, ~' WHILE
REPEAT

ix

173
174
176
177
178
179
180
181
182
183
184
185
186
187
188
188
189
190
191
192
193
194
195
196
197
198

199

I
]

l
J

J

l.

2.

3.

4.

5.

6.

7.

e.
9.

10.

FIGJRfS

Menory Map of a wzypical FClRI'H System 28

'Ibe FORIH Loop 40

Text Interpreter Loop 44

Structure of a Definition 60

Err or Handling 66

EXPECI' 72

WJRD 75

NUmeric Conversion 87

Disc Buffers ill

BLCX:K 113

X

1. Language Definition of FORl'H 2

2. Standard Instructions 10

3. User Instructions 13

4. Creating New Defining Instructions 21

s. Stack Instructions 31

6. IJ'l)ut Output Instructions 32

7. Menory and Dictionary InstruCtions 33

8. Defining Instructions an:i Cootro1 Structures 34

9. Miscellaneous Instructions 34

10. system CQ'lstants 35

11. uservariab1es 36

.
Xl

J

J

J

I
1

CiAPI'ER I

LAN:;tJJ'IGE DEFINITION OF FORI'H

FORl'P. was devel~d as a pro;rcrnm.ing tool to solve real tirre

control problsns. It has ne.rer been formally def med as a tro;rarJning

language. I think FOR'lH is mature enough new that it can be def :ined

very rigorously. 'n'le wide-spread use af this p:1Werful tool requires

that a a:mmon base should be established to facilitate the e»:ha.I"ge of

progrC~ns and ideas in a standarizErl la113uage form. The re::ent publica

tion of FORTH-79 Stamard clearly reflects this ne::essity. To define

FORI'H as a pr03ramming lc!Jl3Uage also helps us to focus our attention on

the basic characteristics of FOR'lH and to un:lerstan:3 it nore fully.

In this Cha~er,

Backus Ncrmal Form (BNF)

I will present the definition of FOR'lH in the

notation. The basic syntax is tresented in

Table I, in which the focal p:>int is the definition of 'wcrd' • Sane

detailed clarifications on colon def :initions and defining words are

worked oot in Tables II to 'N. Explanatory notes are arran:;ed by

sections to highlight sane pcct>lans not cleady e~ressed i n the f ormal

definitions.

1

TABLE I. I.MGJKiE DEFINITION OF FORl'H

<character> : : = <ASCI I code>

<delimiting character> : :• NJL I ~ I SP I <designated character>

<delimiter> ::= <delimiting character> I

<delimiting character><delimiter>

<word> : := <instruction> <number> I <string>

<string> ::=<character> <charner><string>

<number> : :• <integer> I -<integer>

<integer> ::• <digit> <digit><integer>

<digit> : :• 0 I 1 I 2 I ••• I 9 I A I B I ••• I <base-l>

<instruction> : := <standard instruction> I <user instruction>

<standard instruction> : :• <nucleJs instruction>

<interpreter instruction> I

<compiler instruction> I <de.ri<:l! instruction>

<user instruction> : : s <colon instruction> I <code instruction>

<constant> I <variable> I <vcx::ab.llary>

2

J

1

j

I
J

l
l

PROOIW1MIN:; UNGUK;E

A progranming language is a set of symbols with rules (syntax)

of c:anbini.ng then to s~cify execution prcx:::edur es to ~ CXJnputer. A

programming language is used primarily to instruct a canputer to t:erform

~cific fmctions. However, it can also be used ~ pr03ranrrers to

doc:unent and to cannuni.cate prc:blan solving procedures. The most

· essential ingredients of a pr03rarraning larguage are therefore the syrr.tols

it anploys fer eJCpressions and the syntax rules of c:anbining the syrntols

for man-machine cr man-man cx:rrununic:ations.

FCRI'H uses the full set of ASCII chara::ters as syrrJ::ols. Most

programning languages use sutsets of ASCII chara:ters, including only

numerals, upper-case alphabets, and sane punctuation charaters. Us; of

p.r'lctuation characters differs signi. ficantly fran larguage to larguage.

Noo-printable characters are generally resetved e)C[:lusi vely for the systEJ'il

and are not available for laJl3Uage usage. In employing the full ASCII

set of characters, FOR'IH thus allows the ~03ramrer a mudl wic:Er ran;e

of usable symbols to nane d::>jects. On the other harx:l, the prolific use

of FJnctuation characters in FOR'lH makes CXJnpr ehension very difficult ~

unir.itiated programmers.

Only frur of the ASCII characters are used ~ FOR'IS for s~cial.

system fll'lctions and are not for programming usage: NUL (ASCII 0) ,

RJB (ASCII 127) , ~ (ASCII 13), and SP (ASCII 32) . RJB is used to null-

3

ify the pre-v·iously entered character. It is used at the keyboard inter-

actively to correct typin; errors. NJL, ~, and SP are delimiting

characters to set:arate groups of char~ers to form words. All other

. characters are used to form words aro are used the same way. Ncn-print

able characters are treated the same as printable chara:ters. Because

non-printable characters are difficult to doc~JITent and carurunicate,

their usage is discour a;ed in normal progrcmning practice. However,

the non-printable characters are very useful in maintaining a seclr e::1

system.

Wa:ds are the basic synta:tical units in FOR'lH. A word is a group

of characters separated fran other words t:1j delimiting chara:tetS. With

the eY.ception of WL, ~, SP, and RUB, any ASCII chara::ter may be tart

of a word. Certain wcrds for string process:i..ngs may stecify a re<}Jlar

character as the delimiting character for the word ilmrediately following

it, in order to override the delimiting effect of SP. H~er, the

delimiting effect of CR and NUL cannot be overridden.

The usage of 'wcrd' in FCRrH literab.Jre is very confUsing because

many quite different concepts are associated with it. Without sorting

out these different aspects of 'wcrd' into indeperrlently identifiable

entities, it is impossible to arrive at a satisfactory description of

this language. Here the wcrd is defined as a syntactical unit in the

language, simply a group of characters separated fran other words t:1j

4

delimiting characters. Sananti cally (corcerning the meaning of a war d) ,

a word in FORTH can be only one of three things: a string, an instruc:t.ion,

or a number.

A FORl'H progrcrn is thus sinply a list of words. wren this list

of words is given to a canputer with a FOR'IH operating systat loaded in,

the c:anputer will be able to execute or interpret this list of words and

perform f\l'lctions as s~ified ~ this list. The fm~ions may inclucl:

compilation of new instru~ions into the systan to ~rform car.plica ted

fl.:'lctions not implenented in the original operating system.

A string is nerely a group of characters to be ~ocessed ~ the

FCRI'P. canputer. To be ~ocessed corra::tly, a string must be ~e:eeaed

by 21n instruction which ~cifies exa~ly how this string is to be

processed. The string instruction may even s~ify a re;ular character

as the delimiting character for the following string to overri<E the

effect of SP. It is often app:otr iate to consicl:r the string to be an

integral p!rt of the preceeding instru~ion. This woold disturb the

uniform and sirrple syntax rule in FOR'lH and it is better to consi<:Er

strings as iooependent cbjects in the larguage.

String processings are a major canponent in the FOR'IH qe r atir.g

system because FCR'IH is an interpretive language. Strings are neecied

to supply names for new instru~ions, to insert cannents into so:Jrce

s

text for ~~tation,

tate human interface.

and to produce ~ssages at run-time to facili

The resident FOR'IH instructions for string pro-

cessings are all available to programrrers for string manipulations.

A number is a string which causes the FOR'lH canputer to push

a piece of data onto the data stack.

belong to a subset of ASCII charccters.

in this subset is equal to a 'base'

Characters used in a number must

The total m.rnber of char cct ers

vallE s~;ecified by the programrrer.

'I"nis subset starts fran 0 and goes up to 9. If the 'base' vallE is larger

than 10, the upper-case althabets are used in their natural sequen~.

Any reasonable 'base' vallE can be Sf2Cifia:3 an::1 rrodifie:J at ru~time

by the progranmer. Hc:Mever, a very large base vallE causes execssi ve

overlapping betweEn numbers and instructions, and a 'reasonable base

value' must avoid this o:>nflict in SE!tlantical interpretation.

A number can have a leading '-' sign to designate data of negative

value. Certain punctuation charccters such as '.' are also allc:Med in

numbers depending uton the puticular FOR'lH operating systan.

The internal representation of numbers insic2 the FCR'IH canpl.Cer

depends up:m implenentation. The JOOst CXJM"On format is a 16-bit integer

number. Nlll'li::>ers are put: on the data stack to be precessed. The inter

pretation of a number deperrls entirely on the instruction which uses the

nlm'lber. A m.nnber may be used to represent a true-or-false flag, a 7-bit

6

I
I
1

I
I

I
1

1

J

I

ASCII character, an 8-bit ~te, a 16-bit signed or unsigned integer, a

16-bit address, etc. '!'No consecutive numbers rr.ay be used as a 32-bit

signed or unsigned double integer, or a floating point number.

FaU'H is not a tyted la.n:JUage in which nunerical data typ: must

be declared and checked during canpilation. Numbers are loaded on the

data stack where all numbers are represented am treated identically.

Instructions using the numbers on stcck will take whatwer they nea:l

for processing and pwtl their results back on the stcck. It is the

resp:msibility of the prcx;rarmrer to put the corrEct data on the sta::k

and use the corre::t instructions to retriE!Ile then. Nm-discriminating

use of n.mt>ers on stack might seen to be a major source of errors in

using FORl'H for prcx;ranming. In practise, the use of stack greatly

ease the deb.lggin; process in which iriiivicilal instructions can re
thoroughly exercised to spot any discrepancies in stcck manipulations.

'nle most imiX>rtant advantage gained in the uniform usge of data store:3

on data stack is that the instructions b.lilt this way are essentially

context-free and can be r«:p!atedly called in different enviroments to

perform the same task.

Nurltlers and strings are objects or nouns in a prcgrarr.r.Ung lan

guage. 'JYped and named nunbers in a t:rcx;rarn pr~ide vital clues to the

functions and the structures in a prcx;ran. '!he explicitly define:] objects

or nouns make statenents in a prcx;ram easy to canprehero. The implicit

use of data objects store:3 on the data stack makes FOR'lH prcx;ra::-.s very

7

tight and efficient. At the same tim:, state!'ilents in a program deprived

of nouns are difficult to ~rstand. For this reason, the rrost iJTPOrtant

task in dOCUJTenting a FOR'lH progrcrn is to s~ify the sta:k effects of the

instructions, indicating what typ:s of data are retrie.red fran the sta:k

and what types of data are left on the sta:k upon exit.

STM~ INSl'RI.JcriONS

In a FOR1'H canputer, an instruction is best defined as "a named,

linked, rrenory resident, and executable entity 'tohich can be called an::3

executed interactively". The entire linked list of instructions in the

computer memory is called a 'dictionary'. Instructions are known to the

programmer by their ASCII names. 'lbe names of the instructions in a FOR!H

comp..ter are wards that a prograrmrer can use either to execute the instruc

tion interactively or to wild (compile) new instructions to solve his

prograrmning problan.

In FORI'S literature, instructions are called 'wc:rds', 'definit

ions' 1 or 'wocd definitions'. The reason · that I choose to called than

'instructions' is to emfhasize the fact that an instruction given to the

FORI'H computer causes imrediate actions Ferforrred by the cx:mputer. 'nle

instructions in the dictionary are an instruction set of the FOR'lH virtual

computer 1 in the sarre sense as the instruction set of a real a>u. 'nle

difference is that the FOR'IH instructions can be executed dira:tly arx3

the FORTH instructions are accessed by their ASCII names. Therefore,

FORI'H can be considered as a high level assanbly larguage with an Ofen

instruction set for intera:ti ve programnUng and testing. The name

8

• instruction' cxmveys mere precisely the characteristics of a FORI'H

instruction than 'weed' or 'definition' and lea.res 'wcrd' to mean e}(Clu

sively a syntactical mit in the language definition.

Instruction set is the heart of a cxxnputer as well as of a lan

guage. In all conventional Fro;rcrmn.ing lan;uages, the instruction set is

imnutable and limited in ni.Jnber arrl in SCDJ;e. Programrers can circliTlV'ent

the shortcxxni.ngs of a larguage by writing prcgrams to ~rform tasks that

the native instruction set is not capable of. The instruction set in

a F<Rl'H CX>mpllter Frcwi<Es a basis or a skeleton fran which a nore soP~is

ticated instruction set can be built and optimized to solve a t:articular

problan.

Because the instruction set in FOR'lH can be easily exten::led by the

user, it is rather difficult to define FrS:isely the rnininun instruction

set a FOR:rB canputer o~ht to ha.re. The general requirenent is that the

minitnU'l set should provi<E an envirorment in which typical prcgramrr.ing

problans can be solved conveniently. FCR'IH-79 St:an::3ard su;gested such a

mininu.n instruction set as surrrnari.zed in Table II. These instructions

provided by the q>erating systen are called 'standard instruC:ions', and

are divided into nucleJs instructions, interpreter instructions, canpiler

instructions, and deiJ i~ instructions.

USER rnSI'RIJCI'IONS

Instructions created by a user are called 'user instructions' •

9

TABLE II. srANOAAD INSI'RIJCI'IONS

The list of standard instructions is basically that in FORrH-79

Standard. Minor changes are made to c:omfcrm to the instruction set

used in the f ig-FORI'H l-lcdel.

<nucleus instruction> ::• 1 * I */ I */MDD I + I +! I - I -DUP I I I

/MOD I 0< I 0= 0> I 1+ I 1- I 2+ I 2- I < I • I > I >R I @ I

ABS I AND I C! I C@ I QOVE I 0+ I D< I a.!INUS I DRCP I DUP I

EXEXlJTE I EXIT I FILL I MAX I MlN I l-DD I IDVE I NOT I OR I

OVER I R> I R I Ral' I SWAP I U* I U/ I U< I XOR

<interpreter instruction> : :• I I I> I IS I ' I (I -'lRAlLJN; I • I <I I

IN I ? I ABCRI' I BASE I BLK I CDNl'EXT I caJNI' I CURRENl' I

DEX:IMAL I EXPECX I FIND I FOR'm I HERE I HCLD I NUHBER I PAD

QUERY I QUIT I SIGN I SPACE I SPACES I TYrE I U. I WORD

<compiler inStruction> : :• +I.DCP I , I • " I : I : I ALIDT I BEX:iiN I

CO.!PILE I CCNsrANr I ~FATE I DEFINITIONS I 00 I OOES> I ~E I

ENDIF I FCRGET I I I IF I IMMEDIATE I J I LEAVE I LITmAL I

LOOP I REPEAT I srATE I UNI'lL I VPaiABLE I vro.BUIARY I WHILE

[I [001PILE] I l

<device instruction> : :• ~ I BUFFER I ~ I EMIT I El-lPIY-BUFFERS I

FLUSH I KEY I LISr I LOAD I SCR I UEDATE

10

I
]

I
I
l

I
l
J

J

'nlere are several classes of user instructions depending up:>n how they are

created. High level instructions are called 'colon instructions' because

they are generated by the st:ecial. instruction ': '. Low level instructions

containing machine codes of the host CPU are called 'code instructions'

because they are generate:! by the instruction <DOE. Other user instruc

tions include cx>nstants, variables, and vccaoolaries.

Instructions are verbs in FOR'lH lan;uage. They are cxmmands given

to the cantM:er for execution. Instructions cause the cx:rnputer to mc:xlify

menory cells, to move data fran one location to the other. Sane instruc

tions modify the size and the contents of the data stack. Implicitly

using objects on the data stack eliminates nouns in FOR'IH pro:;rarr.s . It

is not uncarmon to he!v'e lines of FOR'IH text without a single noun. The

verbs-only FORI'H text eams it the reputation of a 'write-only' lan:JUage.

FORl'H is an interpretive lan;uage. Instructions given t o the

computer are generally execute:! iJTrTediately by the interpreter, which can

be thought as the ot:erating system in the FOR'IH cxrnputer. This interpr e

ter is called 'text interpreter' or 'ooter interpreter'. A word given to

the FURtH a:rnputer is first parsed out of the inp.It stream, and the text

interpreter searches the dictionary for an instruction with the same narre

as the word given. If an instruction with matching name is foun::J, it is

exeOJted by the text interpreter. The text interpreter also p:rforrrs the

tasks of compiling new user instructions into the dictionary. The t:rocess

of compiling new instructions is very much different frO'il interpreting

11

existing instructions. The text interpreter switches its mode of operation

from interpretation to o::mpila tion by a group of st:ecial. instructions

called 'defining instructions', which ~rform the functions of lan:;uage

· compilers in conventional a:mputers.

Syntax of these defining instructions are roore a:mplic:a ta:l than

the norr.al FORI'H syntax because of the S{ECial COnJitions required of the

compilation of different tyt:es of user instructions. 'Il1e syntax of the

def ining instructions pr<NiCed by a standard FOR'lli o~rating syst:an is

s1:.marized in Table III. The most inportant defining instruction is the

' : ' or colon instruction. To define colon instructions sa.tisfactcrily,

a new entity 'structure' must be intrcx3uced. This cor1C2pt and many other

ar.t:ects i nvolving defining instructions are discussed in the following

s ubsee'"...i.ons.

Str uctures and Colon Instructions

Words are the basic syntactical units in FOR'lH larguage. During

run-time exec..Jtion, each wcxd has only one entry p:>int and one exit paint.

Af t er a word is processed by the interpreter, control returns to the text

interpreter to process the next word consecutively. Canpilation allows

certain words to be executEd repeatedly or to be skipt,:ed selectively at

run-time. A set of instructions, equivalent to o::mpiler dire:tives in

conventional programming larguages, are used to build small nodules to

t ake care of these exceptional cases. These m::>dules are called struc:tur es.

12

l
J

I

l
I

]

TABLE III. tEER INSI'RUCl'IONS

'!he statement in paranthesis is aca:>rding to the FOR'lH syntax.

COLeN INSI'RIJCl'ION
<colon instruction> : := <structure list>
(: <colon instruction> <structure list> .

I

<structure list> : :• <structure><delimiter> I
<structure><delimi.ter><structure list> .

<structure> : :• <wcrd> I <if-else-then> I <begin-mtil>
<begin-while-repeat> I <do-locp>

<if-else-then> : :• IF<delimiter><structure list>~ I
IF<delimiter ><structure list>El.SE<delimiter><structur e list>THEN

<begin-Lntil> : :-= Bmm<delimiter ><structure list>UNI'n:.
<begin-while-repeat> ::• .

BEGm<delimiter><structure list>WHILE<delimiter> <struc::tur e list> REPEAT

<do-loop structure> : :• <structure> I I I J I LFAVE
<do-loop structure list> ::= <do-loq> structure><delimiter> I

<do-loop structure><delimiter><do-locp structure list>
<do-loop> : :• OO<delimiter ><do-locp structure list>LOCP I

DO<delimiter><~loq> structure list>+LOCP

CODE INSI'RUCl'ION
<code instruction> : :• <assenbl.y axle list>
(CODE <code instruction> <assenbl.y axle list>)
<assembly code list> ::a <assenbl.y code><delimiter> I

<assembly code><delimiter><assanbly code list>
<assembly code> : :• <nurri>er><delimiter>, I <nl..mlber><delimiter>C,

cx:NfJXFNr INSI'RUCl'ION
<constant> : : • <number >
(<nunt>er > CCNSTJNI' <constant>

WRIABLE INSI'RIJCl'ION
<variable> : : • <address>
(VMIABLE <variable>)
<address> ::= <integer>

VOCABULPRY INSI'ROCl'ION
<context vcx:ab.llary> : := <vcx:ab.llary>
(VCCABtJIARY <vcx:at:ulacy>)

13

A structure is a list of wcrds bounded by a pair of s~ial

cor.lpiler instructions, sudl as IF-ntEN, BffilN-L'Nl'n.., or ro-I.OOP. A struc

ture, similar to an instruction, has only one entry point and one exit

-point. Within a structure, however, instruction or word sequence can be

conditiorally skip~d or selectively rep:ated at runtine. Structures

do not have names and they cannot be executed outsie2 of the oolon

instruction in which it is defined. However, a structure can be given a

name and be defined as a new user instruction. Structures can be nest6l,

b.lt two structures cannot overlap each other. This would violate the one

entry-one-exit rule far a structure.

Structure is an extension of a word. A structure should be oonsi~

erec as an integral entity like a word insie2 a oolon instruction. Wards

and structures are the buil~ blccks to create new user instructions at

a higher level of tro;ran cx>nstruct. Prograranmg in FOR'lH is tro;ressi vely

creating new instructions fran low level to high level. All the instruct

ions created at low levels are available to build new instructions. The

resulting instruction set then becanes the soll.'Cion to the frcgrcmming

problen. This prograrrrning process oontains naturally all the ingr6lients

of the much touted structure prcgramming and software engineering.

Using the definition of structures, the precise definition of a

colon instruction is: a ~ executable entity equivalent to a list of

structures. When a colon instruction is invoked ~ the interpreter, the

14

1

J

J

J

J

J

I
]

list of structures is executed in the ocder the structures were laid out

in the colon instruction.

~"hen a colon instruction is being canpiled, words apt=earing on the

list of structures are cx:mpiled into the body of the ex>lon instruction as

execution addresses. Thus a colon instruction is similar to a list of

subroutine calls in conventional pro; ramming languages. However, mly the

addresses of the called subroutines are needed in the colon instruction

because the CALL statenent is inplicit. Parameters are passed on the

data stack and the arg.Jment list is elinUnat.Ed also. Therefore, the menory

cwerhead fer a subroutine call is re:3uC2d to a bare miminlill of two cytes

in FOR'I'H. This justifies the claim that equivalent p:o;rars written in

FCR!'H are shorter than those writ ten in asssnbl.y lan;uage.

canpiler instructions setting up the structures are not dire:tly

canpiled into the body of ex>lon instruttions. Instea:J, they set up vario~;s

mechanisms such as o::>rxUtional tests an:3 branch addresses in the CXJnpiled

codes so that execution sequence can be dirECte:3 corectly at run-time. The

detailed codes that are cx:mpiled are irrplenentation de~n:lent.

Code Instructions

Colon instruction allows a user to extem the FOR'IH syst en

at a high level. Prograns develot=ed using only o::>lon instruttions are very

tight and memory efficient. These p:o;rams are also trans!;X)rtable between

different host cx:mputers because of the bufferring of the FOR'lB vi rtllal

15

computer. Nevertheless, there is an overhead in execution st:eed in using

colon instructions. Colon instructions are often nested for many levels

and the interpreter must go throu;h these nested le.rels to find executable

codes which are defined as code instructions. 'tYPically the nesting and

unnesting of oolon instructions {calling and returning) cost a.t:out 20% to

30% of execution tirre. If this execution overhead is too mudl to be tale~

ated in a time-critical situation, instructions can be coded in rrachine

codes which will then be executed at the full machine SI;eed. Instructions

of this type are created l:1j the ODE instruction, which is equivalent to

a rrachine code assenbl.er in conventional canputer systems.

Machine code representation depei'Ds on the host canputer. Each

CPU has its own machine instruction set with its p!rti.cular oode format.

The only universal machine code representation is l:1j numbers. To define

code instructions in a generalized form suitable for any host canputer,

only two st:ecial cxmpiler instructions, ', 1 {comna), and 'C,' are neEded.

C, takes a byte number arrl canpiles it to the body of the code instruction

under construction, and ',' takes a 16-bit integer fran the data st~k arii

compiles it to the body of the code instruction. An assenbl.y code is thus

a mmber followed by 'c,' or ', 1 • The body of a code instruction is a list

of mnnbers representing a seque~ of machine codes. As the code instruc

tion is invoked by the interpreter, this sequel"llS! of machine codes will be

executed by the host CPU.

Advanced assemblers have been develot:ed for alrrost all cx:mputers

16

ccmnercially available based on this simple sx-ntax. Hcst assemblers

use names of assembly nnanonics to define a set of assanbler instructions

which facilitates coding and cbcumenting of the oode instructions. The

detailed discussion of these advanCEd instructions is outsic:E the SCOfe

of this Cllap:er. Exanples of FOR'IH assanbler are discussed in Chapter 14.

Constants, Variables, and Vocab.llary

'!he defining instructions CDNSI'JNT and VARIABLE are used to intro

duce named numbers an5 named menory addresses to the FOR'lH system, resp:c

tivel.y. After a oonstant is def ine:l, when the text interpreter ena::>unters

its name, the assigned valu: of this constant is pushErl to the data stack.

When the interpreter finds the name of a ~Erlef inErl variable, the address

of this variable is pw:he:l to the data stack. Actually, the constants

defined by cx:NSI'Am' and the variables def inErl by VJRIABU: are still verts

in FORTH language. They instruct the FOR'lH cnnputer to intrcx:lua: new c:lata

itens to the data stack. HONarer, their usage is equivalent to that of

numbers, and they are best described as '1:5Eud:>-nc:uns' •

Senantically, a oonstant is equivalent to its ~ eassi g1ed number,

and a variable is equivalent to an address in the RAM menory, as shown in

Table III.

vo:ABOI..JlRY creates subgroups of instructions in the dictionary as

'vocal::ularies'. When the name of a vocabulary is called, the vocabulary is

made the 'context vocab.llary' which is searched fitst by the interpreter.

17

Norr.ta!.ly the dictionary in a FOR!'H computer is a linearly linked list of

ir:structions. vco.EUIMY creates branches to this trunk dictionary so

that the user can st:ecify partial searches in the dictionary. Each brand&

·is characterized by the em of the linked list as a link address. To

exeo..te an instruction defined ~ Vcx::AWI.ARY is to store this link adcress

into memory location named CXJNl'EXT. Hereafter, the text interpreter will

first search the dictionary starting at this link address in CXJNI'EXT when

it receives an instruction fran the in~ stream.

Instructions defined ~ va::AEIJIARY are used to switch context

in FCRI'H. If all instructions were given unique narres, the text inter

p:-eter walld be able to location than without any ambiguity. The IXc:i:>lsn

arises because the user might want to use the same names for different

instructions. This proolan is est:eeially aa.rte for single character

il"'..structions, which are favored for instructions used very often to rEduCE

the typing chore or to rEduce the size of source text. The ueble ASCII

characters is the limit of choices. Instructions of relatEd functions can

be grouped into vocabularies using vocabulary instructions. Ccxltext will

then be switched conveniently fran one vocabulary to another. Instructions

with ieentical names can be used unambiguously if they are placed in dif

ferent vocabularies.

<l{fA..'f'E DEF!NIN:; rnSl'ROCI'IDNS

FORl'H is an interpretive lan;uage with a multituci! of interpreters.

This is the reason why FOR'IH can afford to ha.re such a si~le syntax struc-

18

ture. An instruction is knO'f\"n to a user only by its name. The user reeds

no information on which interpreter will actually execute the instruction.

'!be inter~eter which interprets the instruction is stecifie::J by the inst

ruction itself, in its code field which paints to an exe:::~able routine.

'Ibis executable routine is execute:] at ru~tirne and it interprets the

information contained in the body of the instruction. Instructions create:J

by one defining instruction share the same interpreter. 'Ihe interpreter

which executes code instructions is generally called the 'inner interpr~

ter', and the interpreter which interprets high level o::>lon instructions

is called 'address interpreter', because a o::>lon instruction is equivalent

to a list of addresses. Ca1stants and variables also ha.re their restecti ve

interpreters.

A defining instruction must perform two different tasks when it is

used to define a new user instruction. To create a nEW instruction, the

defining instruction must cxxnpile the nEW instruction into the dictionary,

constructing the name field, link field, code field which point to the

appropriate interpreter, m1d the p:ircrneter field which o::>ntains pertinent

data making up the body of this new instruction. The defining instruc:tion

must also contain an interpreter which will execute the nEW instruction

at r\J'ltirne. The address of this interpreter is inserte::J into the code

field of all user instructions created by this defining instruction. 'n1e

defining instruction is a cxxnbination of a cx:mpiler am an interpreter in

conventional prograrraning terminology. A defining instruction o::>nstruct s

new user instructions during canpilation and executes the instructions it

19

created at rmtime. Because a user instruction uses the code field to

fX)int to its ir.terpr eter, no e>Cplicit syntax rule is necessary for differ

ent types of instructions. Each instruction can be called directly t7t its

name. The user does not ha.re to supply any rore information e}(Cept the

~~es, separated by delimiters.

The most exciting feature of FOR'IH as a trcgramming lan;uage is

that it not only prOIJi&s many resi&nt defining instrud:ions as canpiler

interpreters, rut also supplies the mechanism for the user to defining new

defining instructions to generate new classes of instructions or new data

structures tailc:red to st:eeific applications. This unique feature in FOR'lH

amounts to the capability of exterrling the lan;uage by ex>nstructing new

compilers and new interpreters. Nc:rmal. pro;rcmning activity in FOR'IH is to

bJild new instructions, which is similar to writing progran arx3 pro;rcm

modules in conventional languages. The capability to define new def lning

instructions is extensibility at a high level in the FOR'IH language. 'Ihi.s

unic;ue feature cannot be folJI)j in any other pro;ramming lan;uages.

'!here are two methods to define a new defining instrud:ion as

shown in Table rv. The :-<BUILDS-DOES>-; construct: creates a de£ ini.ng

instruction with an interpreter def ine:J by high level instrud:ions very

similar to a structure list in a regular oolon definition. The interpreter

structure list is put between OOES> and';'. The canpilation trcx::edure is

contained betwe~ <BUILDS and DOES>. Sinaa the intepr eter will be used to

execute all the instructions create:J by this defining instruction, the

20

l
]

1

J

TABLE !!IT. ~m:; NEW DEFININi INSI'RDCI'IONS

<high-level defining instruction> : :=

~<delimiter><cornpil er ~tructur e list> {OOE5l } <del imi.ter>

<interpreter structure list>;

: <high-level defining instruction> CREATE <structure list> OOES>

<structure list> ;)

<lor level defining instruction> ::a

OU'ATE<delimiter ><campil er structure list>; cor:E<delimiter>

<interpreter assembly code list>

(: <lorlevel defining instruc:t.ion> CRFATE <structure list> ;CDIE

<interpreter assembly code list>)

<compiler structure list> : := <struc:t.ure list>

<interpreter struc:t.ure list> : :-= <structure list>

<interpreter assembly code list> ::a <assanbl.y code list>

21

interpreter is preferatlly coded in machine codes to increase execution

s~ed. This is aca:xnplisha:3 by the :-<WILDS-;CODE- construct. ~

compilation procedure is st:ecifiErl by instructions between <BUn.DS and

_ ;CODE. Data following ;aiDE are o::::mpiled as machine codes which will be

used as an interpreter when the new instruction defined by this def .ining

instruction is executed at runtine.

CXNO.USION

Computer programmdng is a form of art, far fran being a discipline

of science or engineering. For a SJ;eCified programning prd:>lan, there

are essentiallY: an infinite number of solti:ions, entirely deperding upon

the programrrer as an artisan. However, we can rate a soll.t:ion t:1j its

correctness, its menory rEqUiranent, and its execution st:eErl. A soll.t:ion

by default must be corre:t. ~ best soll.t:ion has to be the shortest

and the fastest. The only way to achiare this goal is to use a cx::rnputer

with an instruction set o{ti.mizErl for the t:ed:>lan. ot:timizati.on of the

computer hard-rare is clearly ~a::tical be:ause of the elCCess:i.ve costs.

Thus one wa.lld have to a:m~anise t:1j using a fixed, general purpose inst

ruction set offered by a real cx::rnputer or a la.n;uage <XItlpiler. To solve a

problem \t:ith a fixed instruction set, ooe has to write J:Xogra:ms to eire~

vent the shortcomings of the instruction set.

'!he solution in f(RI'H is not arrived at by writing prograns, b.lt

by creating a new instruction set in the FOR'lH virtual o::::mputer. The new

instruction set in essence becanes 'the' solution to the J:Xogramming

22

I
I
1

problan. This new instruction set can be optimized at varioos levels for

memory space and for execution speed, including hardware opd.mization.

FORTH all0111s us to surpass the fundamental limitation of an CXJnpl.ter·,

which is the limited am fixed instruction set. This limitation is also

shared by conventional prograrraning languages, though at a higher ane more

abstract 1 evel.

FORl'H as a programming l~age allows I=Co;;rar.rrers to be m::>re

creative and produc:ti ve, because it enables then to rold a virtual a::rn

puter with an instruction set best suite:J for the (Xd:>lerns at hand. In

this sense, FORl'H is a re~olU:ionar:y deJelopnent in the CXJnputer sciena:

and technolcx.rt.

23

1

I
1

I
J

OiAPl'ER II

Fig-FORrH: AN OPERATIN:; SYSI'D~

A real cx:>mputer is rat."ler unfrieroly. It can only acCEpt in stru c-

tions in the form of a pittem of ones am zeros. Tre instructions must be

arranged correctly in };X'Oter sequenCE in the cx:>re menory. Registers in the

CPU must be properly initialized. The program cx:>unter must t..l)en be set to

toint to the beginning of the progrCitl in memory. After the start signal is

given to the canputer, it runs through the program at a lightenin; steed,

and ends often in a unre:leanable crash. An ot:erating systan is a progra:n

which changes the personality of a cx:mputer and makes it frierrlly to t."le

user. After the ot:erating systan is loaded into the core rreuory anc is

initialized, the canputer is transforrred into a virtlal cx:mputer, ••hic."l

restonds to high 1 e.rel c:anmarxls similar to na t:ur al. En; lish larqua ge a.nd

perfom~s specific fmctions aca:>rding to the o:::rnmands. After it cx:mpletes

a set of canma.nds, it will cx:me back an:l politely ask the user for a new

set of cotrmands. If the user is sl~ in restoroing, it will wait p;tiently.

An operating system also manages all the resources in a canputer

system for t."le user. Harcware resources in a canputer are the C?U tirre,

the core memory, the I/0 devia:s, and disc memory. '!he software resources

include editor, assanbler, hi g.~ level language cx:r.tpilers, program library,

25

application programs and als:> data files. It is the princi:t;al interface

between a computer and its users, and it enables the user to solve his

problem intelligently and efficiently.

Conventional operating systems in most commercial computers share

two corm:ton characteristics: monstrosity and canplexity. A typical Oferating

system on a mini<Xlmputer occupies a voll.me in the order of one megacytes

and it requires a sizable disc drive for normal functioning. A small root

program is memory resid:nt. This root program allows a user to call in

a ~cified program to £Erform a S:f.ecific task. Each progrcm called uses

a peculiar language and syntax structure. To solve a typical programning

problem, a user must learn about six to ten different lan;uages un:Jer a

single operating system, sudl as the Canmarrl Line Intetpr eter, an Editor,

an Assembler or a Z.1acro-assembl.er, one or xoore high level lan;uages with

their compilers, a Linker, a Loader, a Deb.lgger, a Librarian, a File l'.anager,

etc. The user is entirely at the mercy of the computer veroor as far as the

systems software is concerned.

Fig-FOR.I'H is a complete operating system in a very small :t:ackage. A

fig-FORTH system irx:luding a text intetpreter, a oompiler, an editor, and an

assembler usually requires only about 8 Kbytes. The whole system is menory

resident and all functions are available for irmediate execution. It IXOili<:Es

a friendly programmiJ'13 emirorment to solve a IXogrCITIITUng prcblan. 'nle ~

language and syntax rules are used in all P'lases of program developnent.

26

j

J

I
l

'nle bllk of this operating system is the dictionary, \rtlich oontains

all the executable procedures or instructions and sane systan paraneters

necessary for the whole systen to ot=erate. After the dictionary is loaded

into the c:anputer menory, the canputer is transforned into a virt:l.lal FOR'lH

canputer. In this virtual FOR'lH cxxnputer, the memory is divid;d into many

areas to hold different information. A menory zrap of a typical fig-FORm

operating system is shown in Fig. 1, which requires at:out 16 Kcytes of

uenory.

MEMJRY MAP

At the bottan of the JllE!tiOry are the dictionary and boot-up literals.

'!hey canprise the basic FOR'lE systan to be loaded into menory 'When the systa:~

is initialized upon power-up. 1:he dictionary grows toward higher msnory

when new definitions are CXJnpiled. Imnediatel.y atx:>ve the dictionary is the

word t:uffer. When a text string is fed into the text interpreter, it is

first parsed out and then moved to this area to be interpreted or to be

canpiled.

About 68 bytes above the dictionary are reserved for the word buffer.

N:x:Ne the word t:uffer is the output text buffer which tsnporarily hclds texts

to be output to terminal or other devie2s. The starting address of the output

text t:uffer is contained in a user variable PAD • The text buffer is of

Wefinite size as it grows t~rd high memory. It should be noted that

the text bJffer moves upward as the dictionary grows because PAD is

offset from the top of dictionary by 68 bytes. '!be information put into the

text t:uffer should be used before new definitions are a:Jnpiled.

27

Fig . 1. Memory Map of a Typical FORTH System

System
Constants

LIMIT

FI P.ST

UP
RO

TIS
so

OP.IG

High Memory

Disc Buffers

User Area

,."'
Return Sta_ck/ "'

Tenninal"' Buffer
"' --"" ..,.

Data Stack

Text Buffer

Word Buffer

Dictionary

FORTH Nucleus

Boot-Up literals

Low ~1emory

28

User
VarTabl es

• t
• t

~

_j

USE

PREV

RP

IN

SP

OUT
PAD

DP

I
1

l
J

J

J

I
l
I
1

I

1

'!he next area is a nenory space which can be used by the dictionary

fran below or by the data stack fran ab:>ve. The data sta:k grows downwaro

fran high memory to low nenory as data are pw:he:i on it. Data sta:k contrcct.s

back to high memory as data are popt:ed off. If too many definitions are o::~n

piled to the dictionary or too many data itens are puene:i on the data stack,

the data stack might clash against the dictionary, because the free Spice

betwem them is physically limite3. At this point, it is better to clean up

the dictionary. If the dictionary cannot be re3u~d, nore menory Spice should

be allocated betwee1 the data stack and the dictionary, involving the ra:::on

figuration of the systan.

1b::Ne the data stack is an area share:i by the terminal in!tt buffer

with the return stack. 'lhe terminal int:Ot b.lffer is used to store a line

of text the user tTI:ed on the cxmsole termmal. The whole line is noved into

the terminal input b.Jffer for the text interpreter to trcx::ess. The terminal

in~ tuffer grows tc:ward high memory and the return stack grows frcr.t t.'l-te

other end toward low IrErnOry. USJally 256 bytes are reserved for return sta::k

and terminal in};Ut b.lffer. 'nUs SJ;Bce is sufficient for normal op;ration.

The return stack clashes into the input bJffer only when the return sta:: k is

handled improperly which would in any case cause the systan to crash.

Above the return stack is the user area where many systan variables

called user variables are kept. These user variables control the syst.ar.

configurations which can be rnodifie3 by the user to dynamically ra:::onf isur e

29

the system at nntirre. The fmctions of these user variables ~ill be

discussed later in this Chapter.

'n1e last memory area on the top of the menory is for disc buffers.

'Itle disc b.lffers are used to ac~ss the mass storage as the virtual rrenory

of the FORTH systan. Data stored on disc are rea:J in blo::ks into these

b.lffers where the FOR'lH systan can use than much the same as data stored

in regular menory. The data in disc buffers can be rrodified. Mooified data

or even completely new data written into the buffers can be put back to disc

for permanent storage. The sizes aro the mmber of disc buffers deperrl upon

the particular installation aro the chara:teristics of the disc drive.

INSl'RUcriON SET

The virtual fig-FORl'H canputer re:ognizes a rather large set of

instructions, and it can execute these instru~ions intera:ti vely. The

instructions most often used in pro;ramming are sunrna.rized in Tables v to IX.

They are grouped urrler the titles of sta:k instru~ions, inp.Jt/output inst

ructions, memory and dictionary instructions, defining instructions and

control structures, and miscellaneous instru~ions.

'l11e instruction set covers a very wi. de s :fEd: rum of activities. At

the very lowest level, sane trimitive instru~ions manipulate bits and bytes

of data on the data sta:k or in the rnenory. These primitive instructions

are coded in the machine codes of the host canp~er, and they are the ones

that turn a host a:xnputer into a FOR'IH virtual a:xnp~er. At a higher l evel,

instructions can perform canplicated tasks, such as text inteq:>retati.on,

30

J

1

J

J

TABLE V. ~ICK INSI'RI.JCI'IONS

~rand Keys: n 16-bit integer, u 16-bit unsigned integer, d 32-bit
signed double integer, addr 16-bit address, b 8-bit byte, c 7-bit ASCI
character, and f boolean flag.

IlJP
mOP
s-JAP
O'JER
ROI'
-IXJP
>R
R>
R
+
~

*
I
J.DD
/M)D
*/M)D

*I
MAX
MIN
1\BS
tr\BS
MINUS
IMINUS
AND
~
XOR
<
>
•
0<
0•

(n-nn)
(n -)
(nln2-n2nl)
(nln2-nln2nl)
(nln2n3-n2n3nl)
(n-n?)
(n-)
(- n)
(- n)
(nl n2 - S1.Jn)
(ell d2 - S1.Jn)
(nl n2 - diff)
(n1 n2 - prod)
(nl n2 - goot)
(nl n2 - ran)
(nl n2 - ran qoot)
(nl n2 - ran qoot)

(nl n2 - goot)
(nl n2 -max)
(nln2-min)
(n - absol~e)
(d - absolute)
(n - -n)
(d--d)
(nl n2 - and)
(nln2-or)
(nl n2 - xor)
(nln2-f)
(nln2-f)
(nln2-f)
(n - f)
(n - f)

~licate top of stack.
Discard top of stack.
Reverse top two stack itans.
CCF.f secom itsn to top.
Rccate third itsn to top.
Duplicate only if non-zero.
Move top itan to return steck.
Retrieve itan fran return sta:::k.
CCF.f top of return steck onto stack.
Ad3.
Ad3 d:>ubl~precisi.on ntlnbers.
SU:>tr act (nl-n2) •
Multiply.
Divide (nl/n2).
Modulo (remainder fran division).
Divide, giving rsnainder aro quotient.
Multiply, then divie2 (nl*n2/ n3), with
double-precision intenmediate.
Like */M)D, tut give qootient only.
Maximum.
Minimum.
AJ:solute valtE.
Absolute valtE of d:>ubl~precision mrnber .
Change si 9'1·
Change ·sig1 of d:>ubl~precisi.on number.
Logical bitwise AND.
Logical bitwise ~.
Logical bitwise elelusi ve ~.
True if nl less than n2.
True if n1 greater than n2.
True if nl equal to n2.
True if top m.tnber negative.
True if top nunber zero.

31

TABLE VI. INRJT-aJTPUT INSI'RUC!'IONS

(n -)
• R (n u -)
D. (d -)
D.R (d u -)
CR c·->
SPACE (-)
SPACES (u -)
" (-)

ruMP (addr u -)
T1PE (addr u -)
CXlJNl' (addr - addr+ 1 u)
?ITRMIN~L (- f)
KEY (-c)
EMIT (c-)
~CT (adar u -)

WORD (c -)

t--'Ur-BER (addr - d)
<t (-)
(dl-d2)

ts (d-00)

SIGN (nd -d)
#> (d - addr u)
HOLD (c -)
DEX:IMAL (-)
EEX (-)
<:crJiL (-)

Print nunber.
Print number, right-justified in u column •
Print d::>uble-precision nunber.
Print d::>uble-precision nlJilber in u ool1.m1.
Do a carriage-return.
Type one stace •
Type u sp:~.ces.
Print message (terminated by ").
Dump u nunbers starting at address.
Type u chara:ters starting at address.
Change lergth byte string to TYH: form.
True if terminal break request txesent.
Read key, p.lt ASCII vallE on stack.
Type ASCII cbara:ter fran stack.
Read u chara:ters (or until carriage-return)
fran inp.lt device to address.
Read one word fran input stream, delimited
by c.
CCJ'lvert string at address to d::>uble nlmlber .
Start output string.
CCJ'lvert one digit of cbuble number and add
character to output string.
CCJ'lvert all significant digits of d::>uble
number to ootput: string.
Insert sign of n to outpli: string.
Terminate out put string for 'l'Yre •
Insert ASCII cbara:ter into output string.
Set decimal base.
Set hexadecimal base.
Set octal base.

32

I
j

J

J

j

TABLE VI. l£M)RY AND OICI'IDNARY INSI'RIJC!'IDNS

@ (addr - n)
1 (n addr -)
C@ (addr - b)
C! (b addr -)
? (addr -)
+1 (n addr -)
CMJVE (fran to u -)
FILL (addr u b -)

ERASE (addr u-)
BLANKS (addr u -)
HERE (- addr)
PAD (- addr)
AU.m (u -)
, (n -)
I (- addr
FmGET (-)

DEFINITIONS (-)
VOCABULARY (-)
FCRI'H (-)
EDI'IDR (-)
ASSEMBLER (-)
VLISI' (-)

Replace word address l::!f c:ontents.
Store secorrl word at address on top.
Fetch one l::!fte only.
Store one l::!fte only.
Print c:ontents of address.
Ad:3 secorrl nllnber to c:ontents of address.
Move u l::!ftes in menory.
Fill u l::!ftes in menory with b beginning at
address.
Fill u l::!ftes in memory with zeros.
Fill u l::!ftes in menory with blanks.
Return address al:ove dictionary.
Return address of scratx::h area.
LEave a 9l!P of n bytes in the dictionary.
Canpil e ni.Jtlber n into the dictionary.
Firrl address of next string in dictionary.
Delete all definitions al:ove and including
the follc:Ming definition.
Set current vocabulary to c:ontext vocawlary.
Create new vocabulary.
Set c:ontext vocabulary to Forth vocabulary.
Set c:ontext vocabulary to Editor vocabulary.
Set c:ontext vocab.llary to Assenbl. er.
Print names in c:ontext vocabulary.

33

VBLE VIII. OEFINIK; rnsrRUCl'IONS AND CCN'IROL S'mUCI'URES

(-)
-; (-)
VARIABLE (n -)

(- addr)
CXNsrAm' (n -)

(- n)
CDDE (-)
;CDDE (-)
<BJII.nS ••• OOES >

Begin a colon definition.
End of a colon definition.
Create a variable with initial vallE n.
Return addres when executed.
Create a constant with vallE n.
Return the val.ll! n when executed.
Create assembly-language definition.
Create a runtine code routine in assembly codes.
Create a new def wng wcrd, with runti.IIE code
routine in high-level FOR'lH.

00
!OOP
+LOOP

(end+l start -) Set up loop, given index ran;e.
(-) Increnent index, terminate loop if equal to limit.
(n -) Increnent index by n. Terminate loop if outsi.C2

I
LEAVE
IF
ELSE
ENDIF
BffiiN
UNI'IL
REPEAT
wliiLE

(- irrlex)
(-)
(f -)
(-)
(-)
(-)
(f -)
(-)
(f -)

limit.
Place loop index on stack.
Terminate loop at next LOCP or +LOCP.
If top of stack is true, execute true clause.
Begining of the false clause.
End of the IF-ELSE structure.
Start an indefinite loop.
Lcop back to BEriiN until f is true.
Loop back to BEriiN uncorrlitionally.
Exit loop i.Jmediately if f is false.

TABLE VIII. MIScr:LL1NEXXTS INsrRUCl'IONS

((-)
AECRl' (-)
SP@ (- addr)
LISr (screen -)
LOAD (screen -)
BLOCK (block - addr
tJIDATE (-)
FLUSH (-)
D>!Pl'Y-BUFFERS (-)

Begin cannent, terntinata:i by) •
Error termination of execution.
Return address of top stack itan.
List a disk screen.
Lead a disk screen (compile or execute) .

) Read disk blcx::k to menory address.
Mark last blffer accessed as updated.
Write all upd:lted b.lffez:s to disk.
Erase all b.lffe z:s.

34

l
J

J

I
1

accessi.ng virtual menory, creating new instructions, etc. All high level

instructions ul.tinatel.y refer to the trimitive instructions f or execution.

'!his very rich instruction set allows a user to solve a pro:;ramrr.inc; prct-ler.<

cxmveniently and to o};:tirr.ize the s olution f or t:erformana:.

SYS'l'nt ~STANl'S AND USER VMIABLES

Sane system cxmstants defined in fig- FORI'H are lis tee in Table X.

User variables are listed in Table XI. Most of the user variables are pcint

ers p::>inting t o various a reas in the menory map to facilitate ITIE!:'Iory aca:ss.

TABLE X. SYSI'Dt CDNSTml'S

FIRS!' 3BEOH Ad:Jress of the first byte of the disc buffe rs .

LIMIT 4000H Ad:Jress of the l ast byte of disc buffers plus or.e ,

~inting to the free memory not used by the FOR'lH

system.

B/~ 8 Blocks t:er screen. In the f ig-FORl'H model , a bl oc k

is 128 bytes, the capacity of a disc sect or • A screen

i s 1024 bytes used in editor.

B/ BUF 128 Bytes t:e r buffer •

C/L 64 Characters t:er line of inp..:t text.

BL 32 ASCli blank.

35

'!'ABLE XI.

so
RO

· TIB
~'ll\RNIN:;

ID1CE

VCX::-LINK

BLK

IN

srn
OFFSET

SI'ATE

BASE

DPL

FLD
CSP

R#
ELD

USER VARIABLES

Initial value .of the data stack pointer.
Initial valu: of the return stack painter.
Ad:lress of the terminal inpX buffer .
Error message control number. If 1, disc is present, and
screen 4 of drive 0 is the base location of error messages.
If 0, no disc is present and error messages will be presented
by nur..ber . If -1, execute (ABCRI') on error.
Ad:Jress below which FOIGET' ting is trcpt:ed. To forget below
this p:>int the user must alter ·the oontents of FENCE •
The dictionary tDinter which oontains the next free menory
above the dictionary. The valu: may be read by HERE and
altered by ALIDT •
Address of a field in the definition of the rost re:ently
created vcx:ab.llary. All vocabulary narres are linked by
these fields to allow oontrol for FOIGETting through multiple
vocab.llarie~.
CUrrent blo:k number under interpretation. If 0, in~ is
being taken from the terminal input buffer.
Byte offset within the current inpL text buffer (terminal or
disc) from which the next te>.t will be accepted. t.JORO uses
and moves the valu: of m .
Off;et in the text output b.lffer. Its valu: is incranented by
El-tiT • The user may alter aro examine OOT to control
output display formatting .
Screen nlr.lber rost re:::ently referenced by LIST •
Blcx:k offset to disc drives. Cootents of OFFS~ is ad&d
to the stack number by BUX:K •
Pointer to the vccat:ulary within which dictionary search
will first begin.
Pointer to the vocat:ulary in which new definitions are to be
added.
If 0, the systan is in interpretive or executing state. If
non-zero, the systen is in canpiling state. The valu: itself
is implEmentation de~rrlent.
CUrrent m.mber base used for input and outpl.i: nurreric conver
sions.
Number of digits to the right of the decimal point on d::>uble
integer input. It nay also be used to hold output colurm
location of a decimal p:>int in user generated formatting.
'nle default value on single nllllber inpU: is -1.
Field width for fornatted nt.Jnber output.
Tenp:>rarily stored data stack painter for canpilati.on error
checking.
Lo:ation of editor cursor in a text screen.
Ad:lress of the latest chara:ter of text during ni.JTleric outpt.C
conversion.

36

l SUIPLE CCLrn DEFINITIONS

In the fig-FCRl'H mOOel, sorre arithrretic a.rxl l03ical instructior:s

are FORTH high level definitions or colon definitions. They serve very well

as some simple examples in prcxarcmning and in exterriing the basic FOR'!H word

set. Sane of them are liste::l here with their definitions:

:-MINUS+;

: - - 0= ;

: < - 0< ;

: > SWM' < ;

: ROl' >R S·l~ R> SlAP ;

-OOP OJP IF OOP END!F ;

Sane memory · q>erations which affect large areas of menory are also

defined at a high level as colon definitions. FILL is a basic wc:cd later

used to define many others. The definition of FILL is presented here

in the vertical fermat, which will be used exten.si vely in our discussions.

FILL addr n b -

SiiAP >R

ovm C!

OJP 1+

R> 1-

Fill n bytes of memory beginning at addr with the sar.e vallE

of t¥te b.

store n on the return sta::::k

store b in addr

addr+l, to be filled with b

n-1, number of bytes to be filled by Q.JJVE

37

G iOVE A primitive. Copy (addr) to (acdr+l) , (addr+l) to (addr+2) ,

etc , until all n loca ti.ons are filled with b •

.
I

FILL is used to ciefine ERASE which fills a menory area with zero's,

and BtA"TI<S which fills with blanks (ASCII 32).

ERJ..SE 0 FIU. ;

B!.A\ii\S BL FILL ; BL=32, a defined constant

38

I·

l
I
l
l

J

I
l
1

OiAPI'ER III

'!be text interpreter, or the outer interpreter, is "the" operating

system in a FCRI'H cx:.mputer. It is al:::sal~ely essential that the recrler un:ler

stand it completely before trcx::ee:Hng to other sections. Many of the :EXOter

ties of FORr'H language, such as cx:.mt:actness, execution efficiency and ease in

programming and utilization, are enbedc2d in the text interpreter. ~Then the

FQttH complter is boote:3 up, it inrrediately enteiS into the text interpreter.

In the default inteqretive state, the FOR'lH cxr.!puter waits for the oterator

to tyFe in camands on his cxmsole terminal. The c:x:mnarxl text string he t~s

on the terminal, after a carriage return bein~ enterEd, is then t:arsed by the

text interpreter and ap~o~ iate actions will be J:erforrred acCDrdingly.

To make the discussion of text interpreter canplete, we shall start

with the definition, CCLD , meaning starting the cx:.mputer frcrn o:>ld. cn..o

calls ABOR!' • ABCRT calls QUIT which has the text interpreter, na.-ned

properly !1\'l'ERPRET , enbed<Ed. 'nlese def mi.tions are discussed in this

sequence. It is rather stran;e to start the text interpreter with words

like ABCRI' and QUIT • The reason will becane aptarent when we discuss

the error handling procedures. After an error is detecte:3, the error hwling

procedure will isstE an apiZOIX' iate error message am call ABCRT or Qt:I'!'

39

Fig. 2. The FORTH Loop

No

Clear Dictionary
Clear Disc Buffer
Activate Terminal

Clear Data Stack
Select FORTH
Vocabulary

Select Termi na 1
as Input Device
STATE set to 0

Clear Return Stack
Input a Line of

Text

INTERPRET
Interpret the Text

Yes

Yes

40

ERROR

1

j

J

depending up:m the seriousness of the error.

'lhls major FORrH rronitoring loop is sdlsnatically shown in Fig . 2.

Although nothing new is shown in the flow chart, it is holEd that a grcphic

diagram will make a lasting irrpr essio n on the reader to hel. p him urx3e rs tand

more clearly the co~pts disOJssed here.

COLD The a>ld start trocedure.

Adjust the dictionary PJinter to the rnini.num standard aro

restart via ABCRT • May be called fran terminal to ranove

application progrcrn an:l restart.

El-iPI'Y-BUFFERS aear all disc buffers by writing zero's fran FIRS!' t o Lnn.

0 DFNSI'l"f Specify single density diskette drives.

FlRST USE Store the fitst buffer address in USE and PRE.V , prep;ring

for disc accessing.

FlRST PRE.V !

DRO

0 EPRINl'

ORIG

12H +

UP@ 6 +

lOH CYmE

CIU:G OCli + @

Select drive 0 by setting OFFSET to 0 •

Turn off the p:inter.

Starting address of FOR'lH a>des, where initial user variables

are kept.

User area

f'.ove 16 bytes of initial valtEs over to the user area.

Initialize the terminal.

Fetc.'"l the narre field address of the l~t word def i"'le:l in t he

41

FORI'H 6 +

;

trunk FORI'H vocab.llary 1 and

Store it in the FOR'IH vcx:ab.ll.acy link. Dictionary searches

will start at the top of FOR'IH vcx:ab.ll.acy. New words will be

added to FClRl'H vcx:ab.llacy unless another vocabulary is named.

call ABORT 1 t."le· warm start trocedlr e.

Clear the stacks and enter the interpretive state. Return

control to operator's terminal and print a sign-on mesS!ge

on the terminal.

SP! A primitive. Set the stack pointer SP to its origin SO •

DECIMAL Store 10 in B~E 1 establishing decimal nunber CXHlVersions.

CR Output carriage return an::1 line feed to terminal •

• " fig-FORI'H" Print sign-on mesS!ge on terminal.

FOR1'H Select roR'!H trunk vcx:ab.llacy.

DEFINmONS Set OJRREN1' to CCNTEXT so that new definitions will be

linked to the FOR'IB vcx:ab.llary.

QtJIT Jump to the roR'lE loop where the text intetpreter resi<Es.

;

: QUIT

0 BLK !

Clear the return sta:k1 stop o:xnpilation, and return control

to terminal. '!his is the point of retllrn whene.rer an error

occurs in either interpretive or o:xnpila tion states.

BLK contains the cur rent disc blcx:: k ni.Jllber under interpr etion.

0 in BLK indicates the text should o:me fran the terminal.

42

I
I
I

J

J

[COt-1PILE]

BffiiN

RP!

QUERY..-

Th'TERPRLT

STATE @ 0=

IF

• " ok"

ENDIF

AGAIN

.
I

Canpil.e the next IM!-EDIATE wa:d which normally is executed

even in compilation state.

Set STATE to 0, thus enter the interpretive state.

Starting point of the 'FORm loop' •

A primitive. Set return sta:k pointer to its origin RO •

CVLF

Input 80 chara:::ters of text fran the terminal. The

text is tx>sitioned at the address oontaine:J in TIB with

IN set to o.

call the text interpreter to :trcx::ess the input text.

Examine STATE •

STATE is 0, in the intetpr eti ve state

Type ok on terminal to indicate the line of text was success

fully interpreted.

Loop back. Close the FOR'lH loop •

If the interpretation was not successful because of sane

errors, the error handling pro:edur e would print out an error

message and then jump to QUIT •

Fig.3 shows the text interpreter loop in which lines of te>..'t are

parsed and interpreted.

: INI'ERPRET The text interpreter which sequentially exec U: es or car. piles

43

,.)

No

Fig. 3. Text Interpreter Loop

INTERPRET

Search CONTEXT
Vocabulary for
Matching Name

No Search CURRENT
">-------MVocabulary for

Yes

Push Code Field
Address to Stack

Yes

Matching t~ame

No

Convert Word to
Number According

to BASE

No

Yes

EXECUTE
Ca 11 Address
Interpreter

Yes

No

Com pi 1 e Code
Field Address

to Top of
Dictionary

44

Yes

Push
Number
to Data
Stack

No

Compi 1 e Number
as a Litera 1

to Top of
Dict ionary

J

I
J

I
l
I
1

BffiiN

-FIND

IF

STATE @ <

IF CFA I

ElSE

CFA

text fran the intut stream (terminal or disc) deperrling on

STATE • If the word cannot be foun:J after searching CONI'EXT

m1d OJRRn.."T, it is cxmverted to a nl.IIlber aca:>rding to the

current base. That also failing, an error message echoing

the name with a • ?" will be ~inted.

Start the intetpr etati.on loop

Move the next WCX'd fran input:. stream to HERE and search

the CXNrE:XT and then the OlRRENI' vccabularies for a

matching entry. If found, the dict.ionary entry's tarcrneter

field address, its len;th byte, and a boolean true flag are

left on stack. Othez:wise, mly a false flag is left.

A matx::hing entry is found. Do the following:

If the len;th byte < state 1 the word is to be c:x:mpiled.

Conpile the cxx1e field address of this word to the dict.ionary

Length byte > state, this is an innediate word,

then pt% the cxxle field address on the data stack and

EXEXlJTE call the address interpreter to execute this word.

fNDIF (!HeN}
?STICK

EISB

HERE

NJMBER

Check the data suck. If overflow or u.nJerflow, prir.t error

message and jump to OOIT •

No matx::hing entry. Try to cxmvert the text to a nlltlber .

Start of the text string on top of the dict.ionary.

Convert the string at HERE to a signEd oouble nunber I using

current base. If a decimal point is encxHmtered in the text,

its p:>sition is stored in IPL. If mm:ric conversion is not

45

.
I

DPL @ 1+

IF

[CCtt!PILE]

L"LITERAL

ELSE

DROP

[CCMPILE]

LI!'EAAL

ENDIF

FOSSibl.e, an error message will be given am QUIT •

Is there a decimal point? If there is, DPL + 1 should be

greater than zero, i. e., true.

Decinal paint was de ta:t ed

Canpile the next imrediate word.

If canpiling, canpile the double number on stack into a

literal, which will be pushed on stack during exs:ution.

If executing, the number ranains on stack.

No decimal point, the nlltlber should be a single 16 bit nl.lnber.

Discard the high order put of the oouble ni.Jtlber.

If c:anpiling, canpile the nll!lber on stack as a literal. The

number is left on stack if exe:::uting.

Check the data stack overflow or underflow.

End of the IF clause after -FIND •

Repeat interpretion of the next text string in the in~

strean •

The text interpreter seens to be in an infinite loop without an exit,

except the error harrlling procedures in ?SriCK and WMBER • TO:!

normal exit fran this loop, after successfully interpreting a line of text,

is b.lried in a reysterious, nameless word called WLL or 'X' in the FOR'IB

46

l
1

source a::>de. '!be true name of this procedure is an ASCII NUL character,

which cannot be accessed fran the terminal. The text inp% ~a::edur e ai?~rx3s

an ASCII NUL character to the em of a text inp.lt stream in place of a

carriage return which terminates the text stream. After the text stream is

successfully processed, the text interpreter will pick up this null chara:ter

m1d execute the NJLL procedure.

: X

BLK@

IF

_l:~ +!

OIN!

BLK@

7 AND 0=

IF

?EXEX:

R> DROP

ENDIF

ELSE

R> DROP

This name is replaced t:1j an ASCII NOL chara:t er.

Terminate interpretation of a line of text fran terminal or

from disc t::uffer. Fall into the FOR'IH loop an:J print • ok"

on the teoninal an:l wait for terminal inpU:.

Examine BLK to see where the inp.lt stream is fran .

BLK not zero, int:¢ fran disc ooffer.

Select the next disc b.lffe r

Clear IN , pr~ring p:!rsinq of input: text.

There are 8 disc buffers. See if the current ooffer is the

last.

The last ooffer, the em of the text blo:k.

Issue error message if not executing.

Discard the top address on the ret:llrn st5: k, which is the

address of ?ST1C.K after EXEI:urE in the interpretation loop.

BLK•O. '1M text is fran the terminal •

Pop off the top of retllrn stcck.

47

END IF

; The tq> iten on the return stack was thrown away. At the

end of ' X', the interpreter will not rontinLE to execute the

?srPO< instruction, b.lt will return to the next higher level

of nesting and execute the next word after INl'ERPRET in the

FORTH lcx:p. This is when the familiar " ok "' s are t~ on

the terminal, pranpting the oparator for the next cx::mmands.

48

I
J

J

j

ibe fi.J'lction of the text or outer intetpr eter is to terse the text

fran the inp.1t stream, to search the dict:.ionacy for the word parsed out, and

to handle numeric conversions if dict:.ionacy searches failed. wren a matching

entry is famd, the text intetpreter canpiles its code field address into the

dictiorary, if it is in a state of canpila tion. HCMever, if it is in state

of execution or the entry is of the itmediate tyt:e, the text intetpreter just

leaves the ex>de field address on the data stack arx:l calls on the address

interpreter to d::> the real work. The address intetpreter works on the machine

level in the host a:.mputer, hena: it is often referre:l to as the inner inter

preter.

If a wcrd to be executed is a high level FOR'lH definition or a colon

definition, -which has a bunch of oode field addresses in its te.r5neter field,

the address interpreter will prot:erlY intetpret these addresses and execute

them in sequence. HE!'lce the name address intetpreter. The address interpreter

uses the return stack to dig through many levels of nested colon definitions

until it finds a code definition in the FOR'lH nucla1s. This code def:inition

consisting of machine oodes is then exectt:ed by the ~u. At the em of the

code definition, a jump to NEXT instruction is executed, where NEXT is

49

a rLntime procedure returning control to the address interpreter, which will

exec...tte the next definition in sequenCE in the next larel of nesting. This

process goes on al'Xl on until arery word invol~ in every nesting larel is

executed. Finally the cxmtrol is returnEd back to the text intetpreter.

The return stack allows CJlon definitions to be nested indefinitely,

and to oorrectly unnest thensel ves after the ~ imiti ve code definitions are

executed. The address interpreter with an indeperrlent reb.lrn stack thus very

significantly contribltes to the hierarchical structure in the FOR'm language

which spans from the lowest machine codes to the highest possible construct

with a unifcrm and consistent syntax.

To discuss the mechanisms invol~ in the address interpreter, it is

necessary to truch upon the host CPU and its instruction set on which the

FORl'B virtual oomp.Iter is CJnstructed. Hece I have chosen to use the m~n

instruction set as the vehicle. The PD~ll is a stack oriented CPU, sharing

many characteristic:; with the FOR'm virtual ma:::h:ine. All the registez:s hare

predecranenting and postincrsnenting facilities vecy 00111ieni.ent to inplenent

the stacks in FOR'lH. The assanbl.y CX>des using the PDP-ll instructions thls

allow the very ooncise aro pr e:ise definition of functions perforired by the

address interpreter.

The FORrH virtual machine uses four PDP-ll registers for stacks al'Xl

address interpretation. 'lbese registers are narred as follows:

50

J

J

J

S Data stack pointer

RP Return st.a: k painter

IP Interpretive painter

w CUrrent word painter

'lbe data stack ~;X>inter and the return stack pointer point to the top of their

respective stacks. 'nle familiar stack o~ratccs like IXJP, OVER, DRCP, etc

and arithmetic operators roodify the contents as well as the mrnber of items

on the two stacks. Howarer, the user normally does not ha~~e access to the

interpretive pointer nor the word pointer l'l • IP and W are tools used by

the address interpreter.

'nle ward NEXT is a runtine routine of the address interpreter.

IP usually ~;X>ints to the next word to be executED in a colon definition •

.After the current weed is executed, the contents of IP is moved

into W and now IP is incrsnented, ~;X>inting to the next word downstream.

W has the code field address of the word to be executed, and an indirect j rnup

to the address in W starts the execution trcx:ess of this word. In the mean

time, w is also incranented to paint to the piraneter field address of the

word being executed. All code definitions en:is with the routine NEXT, which

allows the next ward after this code definition to be pulled in and

executed.

In PDP-11 fig-FCRI'H, t£XT is def med as a ma::ro rather than an inde

pendent routine. This ma::ro is expanded at the errl of all code definitions.

51

NEXT: r-ov (IP)+,l-1 Move the o:mtent of IP, which points to the next wcrd

to be executed, into w • Irx:ranent IP , pointing to

the second wc:rd in execution sequerx::e.

JMP @(W)+ Jump indira:t to code field address of the next word.

Irx:rement W Sl it paints to the parcrneter field of

this wad. After the jump, the runtine routine point

ed to by the code field of this word will be executed.

If the first wc:rd in the called wc:rd is also a colon definition

one more level of nesting will be entered. If the next word is a cxxie

definition, its code field contains the address of its paraneter field, i.e.,

the code field address plus 2. Here, JMP @(W)+ will execute the codes in the

paraneter field as machine instructions. Thus the code field in a word deter

mims how this wc:rd is to be interpreted by the address interpreter.

To initiate the address interpreter, a word EXEX:tJrE takes the address

on the data stack, which contains the code field address of the word to

be executed, and jump indirect to the routine painted to by the code field.

CODE

l'CN (S) +,W

JMP @(W)+

cfa -

Execute the definition whose code field address cfa

is on the data stack.

Pep the code field address into W , the word pointer

Jump indira:tly to the code routine. In::ranent W to

52

l

J

l

I

~int to the parameter field.

In most colon definitions, the a:xJe field contains the address of a

runtime routine called IXXDL , meaning '00 the OLen routine', which is

the 'address interpreter' for ex>lon def :ini tions.

OOOJL:

IP,- (RP)

W,IP

(IP)+,W

@~1)+

Rllltime routine for all colon definitions.

Push the address of the next word to the reb.J.rn stack

and enter a lower nesting level •

Move the P'-r5neter field address into IP , p::>inting

to the first word in this def :ini tion.

These two instructions are the macro NEXT •

'nle old IP was saved on return stack arrl the new

IP is pointing to the word to be executerl. NEXT

will bring about the IXO~r actions •

Using the interp:ive pointer IP alone would only allow a colon

definition to call code definitions. To achieve multilevel nesting, the

return stack is used as an extension of IP • When a ex>lon definition calls

other colon definitions, the ex>ntents of IP are saved on the return stack

so that the IP can be used to call other definitions in the called colon

definition. OOOJL thus IXCWicEs the machinery to nest indef ir.i tely within

colon definitions.

53

At t.lte end of a colon definition, execution must be returned to the

calling definition. The analogy of NEXT in ex>lon definitions is a word

named ;S , which Cbes the unnesting.

<X> DE ;S Return execution to the calling definition. Umest

one level.

l'tJil (RP)+,IP Pop the return s~k into IP , {X)inting n~ to the

next wcr d to be execute::l in the calling definition.

NEXT Go ahead execute::l the wcrd tointe::l to by IP •

We shall not rE;peat the definition of NEXT which

is ~OV (IP)+,W JMP @(W)+ •

'ttle interplay of the foor registets, IP , W , RP , and 5 allows

the CX>lon definitions to nest am to unnest ex>rre:tly to an indefinite depth,

limited only by the size of the return s~k allcx:ate::l in the systan. This

process of nesting and unnesting is a major ex>ntrib.ltor to the canpactness

of the FORl'H language. The averhead of a subroutine call in FORlH is only

two t:¥tes, representing the address of the called subroutine.

A feN variations of NEXT are often define::l in fig-FORrH for many

microprocessors as errlings of CX>de definitions. PD~ll fig-FORl'H did not use

then because of the ve tsa tal ity of the ID~ ll instruction set. Ne~e rthele ss,

t."lese endings are ~;resentErl here in IDP CX>des for canpleteness ard consist

ency.

54

I
1

I
J

PUSH:

R:>P:

PUT:

fiCN 01-(S)

NEXT

'1ST (S)+

NOO'

l'CN 01 (S)

NEXT

P\.sh the amtents of the acCUTIUla tar to the data

stack ana return to NEXT •

P\.sh 0 register to data st~k

Discard the top iten of data stack

Return

Replace the top of data stack with the a:mtents of

the accumulator 1 here register 0 1 and

return.

LIT: P.rN (IP) +15 Push the next word to the data sta::k as a literal.

Increnent IP and skip this literal.

Return.

LIT is used to CXITipile nunbers into the dictionary.

At r1.r1tine 1 LIT puhes the in-line literal to the

data stack to be used in acmputations.

55

J

J

1

l
1

OW'l'ER V

'nle FCRI'H mmp.lter Sp!rds most af its tiJre waiting for the user to

type in sane camards at the terminal • Wll!n it is actually ooing saneth:ing

useful, it is doing one af two things: executing or interpreting wcxds with

the address interpreter, or p1rsing and canpiling the input texts fran the

terminal or disc. These are the two 'states' of the FOR'lH CXJDputer when

it is executing. Intemal.ly, the FOR'lH systsn uses an user variable S!ATE

to ranind itself what kind of jd:> it is supposed to be doing. If the contents

of 8rKr'E is zero, the systen is in the executing state, and if the contents

of srKrE is not zero, it is in the a:mpiling state. TWo instructions are

provided for the q:lerator to eJ!Plicitly switch between the exe:~Ling state

and the canpiling state. They are ' [', left-bracket, and '] ', right-bracket.

: [

o srKrE

; IMMEDIATE

Used in a ex>lon definition in the form:

:nnnn- [-] -. ,
Suspend canpilation and execute the words following [up to

] • This allows calculation or a:mpilation exceptions before

resmning canpilation with] •

Write 0 into the user variable srME and switch to executing

state.

[must be executed, rot a:mpiled.

57

:]

COH srATE

;

Resume compilation till the end of a ex>lon definition.

The text inter:preter ccmpares the vallE stcca:l in srATE with

the value in the lerr:;th byte of the def mi tion foum in the

dictionary. If the def mition is an imtediate word, its

length byte is greater than COB because of the ~a:edei'Xl!

and the sign bits are both set. Setting srATE to COB will

fcrce non-inmediate words to be o::mpiled ani irmediate words

to be executed, thus entering into the 'oompil ing state' •

In either state, the text interpreter parses a text string out of the

inp.lt stream and searches the dictionary for a matching nane. If an entry or

a wcrd of the same name is found, its ax3e field address will be puma:l to
IP

the data stack. Now, if srATE is zero, the address inter:preter is called in

to execute this word. If srATE is not zero, the text inter:preter itself will

push this code field address to the top of dictionary, md • oompile' this

wcrd into the body of a new definition the text inter:pr eter is working on.

Therefore, the text inter:preter is the canpiler in the FOR'lB systan, and it

is very much being op:imize:l to d::> canpilations just as effeciently as intet--

pretations.

'nlere are rurerous instane2s when the canpiler cannot d::> its jcb if

complicated progran structures are to be built. The canpiler itself can only

compile linear prograns, me ward after another. If trcx;ram structures

58

I
J

J

require branching in execution sequence, as in the BEGlN-tn-.'I'IL, IF-ELSE

ENDIF, and oo-LCXl? types of cxmstructs, the c::anpiler needs lots of help fran

the address interpc eter. Tl'e help is pro;ic2d throu;h wards of the

IMMEDIATE nature, ~ich a.re imtediately executED even when the systan is in

the canplling state. 'nlese imrediate words are therEfore canpiler dire::ti ves

which direct the compiling process so that at runti.ne the execution sequei"'Ies

may be altered.

In this Olapter, we shall fitst discuss the words which create a

headt for a new def .inition in the dictionacy. These are words which start the

cxrnpiling process. In Chapter 12 we shall discuss the imtediate words which
Or eM\..

construct ;,. oorx:ii.tional. orA. unanxUtional. branch to take care af special CXIllpi-

lation comi tions.

A dictionary mtry or a word must hare a hea:Jer which consists of a

name field, a link field, and a code field. The body of the word is contame::l

in the par!ltleter field right after the code field. The hea1er is create::l by

the ward CREATE and its derivat:i ves, which are called de£ ining wcrds because

they are used to create or de£ ine different classes of words. All words in

the same class have the sane code f iel. d address in the code fields. The code

field address P'ints to a code . routine which will intetpr et this word

when this wcxd is to be execute:3. The struc:tur e of a de£ ini tion as canpiled

in the dictiomry is shown in Fig. 4.

Used in the form CUM'E ecce

59

Fig. 4. Structure of a Definition

Name Field Addr
(NFA}

Link Field Addr
(lFA)

Code Field Addr
(CFA}

Parameter Field
Address (PFA)

1 P 1 S J ~e~gt,h

0 ASCII 1

0 ASCII 2

.. .

. . .

...
1 last ASCII

Link Field 1

link Field 2

Code Field 1

Code Field 2

Parameter Field 1

Parameter Field 2

...

.. .

...

60

P: Precedence Bit
S: Smudge Bit

HEAD of
Definition

BODY OF
Definition

..

•

BL WORD

HERE

IlJP C@

W!DI'H @

MIN

1+ MU:fr

Create a dictiorary header for a nEW def lnition with nam:

ecce • The new word is linked to the ORREN!' vocabulary. The

code field J;X>ints to the puaneter field, rea:ly to canpile

a code definition.

Bring the next string delimitED cy blanks to the top of

dictionary.

Save dictionary J;X>inter as nam: field ad<% ess to be linked.

Get the len;th ~e of the string

WII1I'H has the uaximum number of charaets allowed in the

name field.

Use the snaller of the two, and

al.l~ate Spice for name field, and advanCE IP to link field.

IlJP OAOB 'IOO:LE Toggle the eighth (start) and the sixth (smud:Je) bits in the

length byte of the name field. Make a 'snudged' head so that

dictionary search will not find this name •

HERE 1- SOH 'ltXn.E

LATEST ,

aJRRENT @ !

HERE 2+ I

.
I

Toggle the eighth bit in the last chara::ter of the nane as a

delimiter to the nmne field.

canpile the name field address of the last word in the link

field, extending the linking chain.

Up3ate cx>ntents of LATFSI' in the cur rent vocabulary.

Canpile the plrsneter field address into code field, for the

convenience of a new c::ode de£ ini tion. Fcx other tyt:e s of

definitions, proper oode routine address will be canpiled

here •

61

CODE

OUM'E

[CCMPILE]

ASSENBLER

;

Create a dictionary header for a code definition. The code

field contains its tarareter field adckess. A$embly oodes

are to be compiled (assanbl.ed) into the tarameter field.

Create the header, rothing more to be d:>ne on the header.

Select ASSEMBLER vocabulacy as the <DNrEXT vocabulacy,

which has all the assenbly rmaooni.cs am wcrds pertaining to

assembly processes.

It is irnp:>rtant to rananber that the text interpreter itself is c::Ding

the job of an assenbler. 'nlus all the words definEd in the FOR'IH voca.bula.ey

are available to assist the assenbl.ing of machine CX>des. In fact assenbl.ing

code de£ ini tions is much ror e canplica tee than can piling colon Oef ini tions.

Many utility routines ha.re to be defined in the assenbler vocabulacy before

the simplest of code definitions can be assenbled. This put of the

assembler vcx:ab.llary is generally called the ~~assembler, ~icb is not

in the fig-FORm mcxjel . be:ause it is machine deperoent. In Olapter 14

we shall discuss the details involwd in an assanbl.er, based on IDP-ll

and 8080 instruction sets.

Start a oolon definition, used in the form

:ecce - ;

Create a dictionary header with name ecce as equivalent to

62

I
J

J

the following sequence of wcxds - until the next

1
:

1 or :CXIDE • The canpiling process is cbne by the text

interpreter as lo1'13 as STATE is non-zero. The CDNI'EXT voca

tulary is set to OJRRENI' vcx:abulary , and wcxds with the

precedence (P) bit set are executed rather than canpiled.

?EXEX: Issue an error message if not executing .

lCSP SC!\Te the stack pointer in CSP to be checked by ' . ' I or ;a:DE •

CllRRENT @ CCNl'En' 1

]

:roDE

Make a:Nl'EXT vcx:abulary the same as the OJRRENI' vocabulary.

Now create the header and establish linkage with the cur rent

vocabJlary.

Change STATE to non-zero. Enter canpiling state arx:l canpile

the wcxcs following till ':' or :<IDE •

Em of the canpiling process for ':'. The following codes are

to be executed when the word ecce is called. The aderess

here is to be canpiled into the code field of ecce •

IXXDL: MJV IP,- (RP) Pu;h IP on the return stack

KN W,IP

NEXT

Move the puarreter field address into IP , the next

word to be executed.

Go execute the next word.

Execution of IXXXlL adds one nor e level of nesting. Umesting is done

by ';' (semi-colon) , which should be the lest word in a ex>lon de£ ini tion.

63

?CSP

CXMPILE :S

SMU!GE

.
I

IMMEDIATE

Terminate a oolon definition and stop further canpilation.

Return execution to the calling definition at run tine.

~ck the stcck pointer with that saved in CSP • If they

differ, issue an error mess:lge.

Canpile the CX>de field address of the word ;S into the

dictionary, at runtine. ;S will return execution to the

calling definition.

Toggle the snudge bit back to zero. Re;tore the lergth byte

in the name field, thus canpleting the canpila tion of a new

wcrd.

Set STATE to ze.:o arrl return to the executing state •

An:>ther ending of a oolon definition ;CODE as seen in the definition

of 1
:

1
, involves an advanced OOJ'lO!pt of defining a def ining wcr d. ~ dis Cll!r

sions of this con~pt will be the topic of Chapter 11 oo the defining wcrds.

The detailed wcrds which manipulates information in the dictionary will be

discussed in Olapter 9. The i..mrtediate words. used in oonstructing brandling

structures are treate:3 in Chapter 12 of oontrol structures.

64

I
J

j

OiAPI'ER VI

'!be fig-FCRI'H model provides very extensive error che: king prcx:edl.lr es

to ensure compiler secl.lr ity 1 so that a:mpila tion results in (X)rra:t arx:l

executable definitions. To facilitate error che:king and rtporti.ng, fic;-FORTH

model maintains an user variable WARNIN:i and one or rrore disc blcx:ks cx:>ntai"'l

ing error messages.

'!he user variable WJ!RNJN:; controls the actions taken after an error

is detected. If WMNJN:i (X)ntaJ.ns l1 a disc is present and saeen nl.lnber 4

in Drive 0 is supposed to be the base location of all error messages. If

WMNIN:i contains 0 1 ro disc is available and error messages will be r E:por te5

simply cy an error nlltlber. If W1RNIN:; (X)ntains -11 the word (ABCRI') will

be execUted. The user can mdify the word (ABCRI') to def me his own error

checking policy. In the fig-FCRI'H nodel 1 (ABCRI') calls ABORT which restarts

the system (wa.cn start). The error han:lling process is best shown in a flow

chart in Fig. 5.

?ERRCR f n-

Issue error message n if the boolean flag f is true.

Test the flag f

65

Fig. 5. Error Handling

Yes
"">----------+~ABORT

No

Print Text String
Under Interpretation

Yes

Print Error
Message on Disc

Clear Data Stack
Push IN and BLK
on Data Stack

66

No

Print Error
Number

1

I
J

I
J

IF ERRCR

ELSE IROP

END IF

. ,

: mRCR

WMNIN:;@ 0<

IF (ABCRr)

ENDIF

True. Call mRCR to issue error message.

No error. Drop n and return to caller.

n - in blk

Issue error message and restart the systen. Fig-FORI'H saves

the cxmtents in IN and BLK on sta:::k to assist in deter-

mining the lo:ation of error.

See if WARNIN:; is -1,

if so, al::ort and restart.

HERE CXlJN1' TYPE Print name of the offen:ling wcrd on top of the dictionary.

MESSFGE

SP!

IN@

BLK@

. ,

: (ABCRr)

ABORr ;

Ad3 a question mark to the terndnal •

Type the error message store:J on disc.

aean the data sta:::k.

Fetch IN and BLK oo s~k for the Oferator to lock at if

he wishes.

restart the FORJH loop.

Execute ABORT after an error when WMNIN::; is -1. It

may be changed to a user defmed procedure.

·,

MESSIGE n-

Print on the terminal n • th line of text r el.a ti ve to sa een

4 of Drive 0.

Exanine WARNIN3 •

IF (w~nJ::i) =1, error messages are on disc.

-OOP

IF n is not zero

4 OFFSET @ B/S~ I -

calculate the screen nunber where the message resiees.

• LINE Print out that line of error message •

END IF

ELSE No disc.

• .. MS:;#" • Print out the error nunber instead •

ENDIF

NCM we have the utilities to handle error messages, we shall t:cesent

some error checking prcx:edur es def ine:J in f ig-FORl'H.

: ?a:t1P

S!ATE @

0=

11 ?ERRCR

.
I

Issue error message ll if not cx:mpiling.

Exanine sr ATE •

Is it 0 ?

Issue error message if srATE is 0, the exe:uting state.

68

: ?EXE:

STATE @

12 ?ERRCR

. ,

: ?PAIRs

13 ?ERRCR

. ,

: ?CSP

SP@

CSP@

14 ?ERRCR

;

: ?LCW):rn::;

BLI< @

0=

16 ?E:RRCR

;

Issue error message 12 if not executing .

If Sl'ATE is not zero,

issue error messge.

nl n2 -

Issue error message 13 if nl is not equal to n2. This error

indicates that the CXJnpi1ed corrlitional s do not match.

CQnp!re nl and n2. If not equal ,

issue error messge •

Issue error messge 14 if data sta:k painter was alterEd frar.

that saved in CSP •

CUrrent sta::k pointer

Saved sta::k painter

If not equal ,

issue error messge 14.

Issue error messge 16 if not loading sa:eens.

If BLK=O, in pi is fran the terminal .

Issue error message.

69

: ?S!!CK

SP@ so >

1 ?ERRCR

SP@ HERE 128 + <

7 ?ERRCR

. ,

Issue error message if the data stack is out of boun:is.

SP is out of u~r boun:i, stack underflow

Error 1.

SP is out of lower boun:i, stack overflow

Error 7.

70

I
J

j

J

CHAPl'ER VII

'nle basic primitives handling terminal in~ and output in FOR'lH are

KEY and EMIT • 'nle def Wtions of than deperrl on the host canputer a.nd its

harGiare cx>nfigurations. It is sufficient to mention here that KLi acCEpts

a keystroke fran the terminal keyboard m1d leCJJes the ASCII code of the

character of this key on the data sta=k. EMIT p::>ps an ASCII chara:ter fran

the data stack and transnits it to the termmal for display. EMIT also

increnents the variable CXJT far ea:h chara:ter it puts out.

'n1e ward that causes a line of text to be rezr:j in fran the term:inal.

is EXPECI' • A flow chart shows grat=hically row EXPECT precesses

characters typed in throu;h the terminal.

: EX?ECI'

OVER+

OVER

00

addr n -

Transfer n characters fran the terminal to menory starting at

addr. The text may be terminated by a carria;e return.

An ASCII NUL is app!riied to the errl of text.

addr+n, the errl of text.

Start of text

Repeat the following for n tines

71

No

Char Count=O
Char Pointer

=ADDR

Get 1 Char from
Input Terminal

r~o

Store Char in
Input Buffer
Append with a

ASCII NULL
Increment

Char Pointer

Yes

Fig. 6. EXPECT

Yes

Y~s

Append a NULL
and a BLANK

to Input Buffer

Set Char Count
to Buffer Limit
to Exit the Loop

72

No

Decrement
Char Count

Echo Backspace
to Terminal
Increment

Char Pointer

Yes

Echo
BELL to
Terminal

I
j

1

I

l

KEY

IXJP

om ...auGIN

•

IF

mCP

8

OV'ER

I •

OOP

R> 2- +

>R

ELSE

OOP ODH •

IF

LEAVE

mCP BL

0

ELSE IXJP

ENDIF

I C!

Get ooe character from teminal

Make a co P.r'

Get the ~CII CX>de af in~ back-space

If the input is a back-space

Discard the back-space still on sta:k.

Replace it with the back-space for th.e outpl.i: device

eq,y adck

See if the current cha.ra=ter is the fiiSt chara::ter af text

eq,y it, to be used as a flag.

Get the loop index. Decrenent it by 1 if it is the starting

character, or decrBnent it by 2 if it is in the middle of

the text.

Put the correcta3 loop index back on return sta:k.

If the back-SP'-ce is the fitst chara::ter, ring the bell.

Otherwise, output back-space and decranent chara::ter count.

Net: a back-SP'-ce

Is it a carriage-return?

Yes, it is carriage-return

Prepare to exit the loop. CR is errl of text line.

Drop ~ fran the sta:k arx3 replace with a blar»t.

Put a null on stac: k.

Input is a re;ular ASCII charccter. Make a COpt.

Store the ASCII chara:ter into the input buffer area.

73

0 I 1+

ENDIF

EMIT

LOOP

DROP

QUERY

Tm@

SOH EXPECl'

om!

. ,

Guard the text with an ASCII NUL.

EnJ of the inp.i: loop

Eclx:> the inp.lt chara=ter to terminal

Lcop back if not the errl of text.

Discard the ad<% ranaining on stack.

Input 80 characters (or until a carricge-return) fran the

terminal and place the text in the termmal inp.i: buffer.

TIB cont:.a.ms the starting adcress of the inp.i: termmal

b.lffer.

Get 80 char act ets.

Set the inptZ: chara=ter oounter IN to 0. Text pax:sing

shall begin at TIB •

The wcrk horse in the text intetpreter is the word WORD , ~ich

parses a string delimited by a st=eeifie:i ASCII chara=ter fran the inp.i:

bJffer and places the string into the word buffer on top of the dictionary.

The string in the wcrd buffer is in the oorre:t form for a n.ane field in

a new def ini. ti on. It may be IX'cx:essed otherwise as re:;{Uir8J by the text

interpreter. A flow diagrcrn of WORD is show in Fig. 7, followed by

a more detailed description.

:WORD c-

74

l
J

1

J

Fig. 7. WORD

(WORD)

~ No
~>-------

Yes

Select Tenninal
Input Buffer as
Source of Text

Add Character
Offset IN to

Buffer Address

ENCLOSE:
Break out a String
Delimited by Char

on Stack

Write 34 BLANKs
on Top of

Dictionary

Move the String
with its Length

Byte to Dictionary

{ RETURN)

75

Read Block BLK
from Disc to
Disc Buffer

Select Disc Buffer
as Source of Text

BLK@

IF

BLK@

BLCCK

ELSE

TIB@

ENDIF

m@

+

Read text fran the inp.rt: strean until a delimiter c is

encountered. Store the text string at the top of dictionacy

starting at HERE • The fitst byte is the char~er COW1t,

then the text string, and two or roore blanks. If BLK is

zero intut is fran the termmal; othetwise, inp.;C fran the

disc blcx:k referred to by BLK •

BLK=O?

BLK is not zero, go lock at the disc.

The BLOCK number

Grab a blcx:k of data fran disc and p~ it in a disc buffer.

Leave the t:uffer addr:ess on the stack. BLCCK is the word to

access disc virtual msoory.

BLK.O, inttt is fran terminal

Text should be pli: in the terminal inp.;C buffer.

IN contains the char~er offset into the cur rent inpti: text

b.lffer.

Aai offset to the starting addr:ess of b.lffer, PJinting to the

next character to be read in.

Get delimiter c over the string addr:ess.

A primitive word to scan the text. Fran the byte addr: ess am

the delimiter c , it determines the byte offset to the fitst

non-delimiter character, the offset to the fitst delimiter

after the text string, and the offset to the next char~er

after the delimiter. If the string is delimits3 by a WL ,

76

J

1

J

HERE 22H BL1lNKS

IN +1

OJm- >R

R HERE C!

+

HERE l+

R>

ODVE

;

the last off~t is equal to the previous offset.

(addr c - addr nl n2 n3)

Write 34 blanks to the top of dic=ionaz:y.

Increnent IN t:¥ the charccter count, p::>inti.ng to t he next

text string to be ~ISed.

Save n2-nl en return sta::: k.

Store character count as the len;th byte at HERE •

Buffer adaess + nl, starting paint of the text string in the

text b.lffer.

Ad:3ress after the len;th byte on dic=ionaty.

Get the chara::ter count ba::k fr.an the return sta:::k.

Move the string fran inp:t. buffer to top of dictionaz:y.

The text string moved over to the top of the dictiona.z:y is in the

correct form fer a new header, should an&\' definition be create:J. It is also

in the right form to be CXlrltBre:l with other entries in the dictionaz:y

for a matching name. After the text str.ing is placed at HERE , the text

interpreter will be able to FCocess it.

:TYPE

Follodng are wcrds fcx typing string data to the outpli: ternrinal.

addr n -

Transmit n characteiS fran a text string stored at adC:::

to the terminal.

77

-OOP

IF

OVER+

00

I C@

EMIT

ELSE

DRCP

ENOIF

;

Ccpy n if it is not zero.

n is no~zero

addr+ n , the en::l of text

addr, start of text

Loop to tyt:e n characters

Fetch character fran text

Typ! out

n •0, ro outp.X

Discard adck

Since lots of text strings ~cx::essed by the text intetpr eter hwe

a character count as the fimt byte of the string , such as the name field

of a word, a Sp:!cial word CXXJNI' is de£ ine:3 to ~epare this tyt:e of strings

to be typed out by 'rYH: •

CClJNl' addrl - addr2 n

OOP 1+

C@

.
I

Push the address and byte count n of a text string at addrl

to the data sta:k. The fimt byte of the text string is a

byte count. cnrnr is usllllly followed by TYPE •

adda=addrl + 1

swap adcrl over adck2 and

fetch the byte count to the sta: k.

78

]

J

J

If the text string contains lots of blanks at the em, there is no

use to tyt:e then out. A utility word -'IRAILm:; can be use3 to strip off

these trailing blanks so that sane I / 0 tine can be saved. 'Ire canmand to

tyt:e out e lor¥3 text string is

IlJP 0

00

addr

OVER OIJER

+ 1-

C@ BL

IF LFAVE

n.sE 1-

ENDIF

LOOP

addr nl - addr n2

Adjust the character CX)unt nl of a text strmg at ader t o

suppress trailmg blanks.

Scan nl .char a:t ets

Cq:Jy addr an::1 nl

addr+nl-1, the address of the last chara:ter in the str:ing.

See if it is a blank

Nee a blar*. Exit the loop.

Blank. n2anl-l is new on the sta:k.

La:>p back, decranenting nl until a non-blank chara:ter is

famd, teoninating the loop.

In a colon definition, saneti.tres it is necesau:y to incl\XE mess:ige

to be typed out at runti.rre to alert the o~rator, or to indi cate to him the

79

progress of the progran. These messages can be coded in.side a definition

using the camand

• • text string - •

The wcrd • will cause the text string up to • to be typ!d out. The •

definition of • " uses a runtine txocedure (. ") which will be discussed

first.

: (. ")

R

roP l+

R> + >R

. ,

. " . .

22B

Sl'ATE @

IF

Rmtime procedure CXJnpiled by • • to tyt:e an in-line text

string to the terminal.

Ccv.f IP fran the return stack, wich paints to the begining

of the in-line text string.

Get the len;th byte of the string, preplring for TYPE •

Length+l

Increnent IP on the return stack by len;;th+l, thus skip the

text string and paint to the next word after • , wich is

the next wcrd to be exe::uted.

NCM tn:e out the text string •

Canpile an in-line text delimited by the trailing • • Use

the rmtine procedure (. ") to tyt:e this text to the terminal •

~CII valle of the delimiter • •

Canpiling or exe:uting?

Canpiling state

a:MPILE (. ") Canpile the a:xle f iel.d ad cress of (. ") so it will tyie out

80

HERE C@

1+ M.U:Ir

HERE

mDIF

!Mt-EDIATE

: ID.

J?ru)

20H

SFH FILL

IXJP PFA LFA

ovm-

text at rtllti.ne.

Fetch the text string delimitEd by • , and store it on top of

dictionary, in-line with the cxmpiled adcresses.

Fetch the length of string

Move the dictionary pointer pliSing the text string. Ready to

compile the next word in the same definition.

Executin; state

Get the text to HERE , O'l top of dictionary.

Start of text string, ready to be tYil!d out.

This word • • must be executED irmediately in the canpil.ing

state to process the text string after it. IMMIDIATE

toggles the precedene2 bit in the nane field of • • to make

it an • ilmediate word'.

nfa-

Print an entry's name fran its name field adckess on sta:k.

Output text buffer address

~ar blank
~

Fill mo with as blanks q 5

Find the link field adcress

lfa-nfa, chara::ter ex>unt

PAD 9/lM' CMJVE Move the entire narre with the lergth byte to mD

PAD CaJNl' Prepare string for outp~

81

OlFH AND

SPACE

No more than 31 characters

~ OJt the name

AtPend a spsce.

It is necessary to m:we the name to PAD for output, because

the lE!'lgth byte in the name field contains extra bits which

contain imp:>rtant information not to be disturbed by outpU:

procedures.

The basic wcrd to print cut text stored on disc is .LINE , which

prints cut a line (64 charactet:S) of text in a saeen. .LINE is also use::l

to cutput error messages stored on disc, and to display screens of texts in

the editor.

: .LINE

(LINE)

line s:r -

Print oo the terminal a line of text fran disc by its line

n\.mlber Cl'ld screen nnnber scr given on stack. Trailing

blanks are also StJRr essed.

Rllltime prcx::edure to comert the line nl.mber and the saeen

ru.IIIber to disc buffer adc%ess containing the text.

-'lRAIL~ TYPE ~ out the text •

. ,

: (LINE)

>R

line sa - addr count

Save scr on return stack.

82

1

1

C/L B/BOF * /K)D

calculate the character offmt and the screen offset nllnbecs

fran the line n\Jtlber, char act em/line, and bytes/l:uffei.

R> B/sc::R * + calculate the blcx:k mmber fran scr , blcx:ks/scr, and the

blffer nLmlber left by * /K>D.

call BLCX:K to get data fran disc to the disc buffer, and

leave the blffer adck ess on stack.

+ Ad3 chara:ter offset to buffer address to get the starting

address of the text.

C/L 64 charactets/line

;

:LIST n-

Display the ~en text of screen n on the terminal •

Switch to decimal base am output a carriag~return.

Store n into~ to be used by the editor •

• • s~ t • • Print the screen nunber n fimt.

lOB 0 DO Print the text in 16 lines of 64 chara:tets each.

~ I 3 .R SPACE Print line nunber.

I s~ @ .LINE call .LINE to :frint one line of text.

output a carria;e return after the 16th line.

83

I
, l

j

l

1

J

I
1

J

CBAPI'ER VIII

NUftERIC ~ICNS

A very imP>rtant task of the text interpreter is to comert nuntets

fran a hunan readable form into a machine readable form and via! vei:Sa.

FCRI'H allows its operator the luxury of using any nunber base, be it <Ecirnal,

octal, hexadecinal, binary, radix 36, radix 50, etc. Be can also switch fran

one base to another without much effort. The secret lies in a user varicble

named BASE which holds the base vallE used to con.rert a ma:hine binary

number for ootput, and to comert a user. inp.lt m.rnber to ma:hine binary.

The default value st or e3 in BASE is decimal 10 • It can be ch ai'13 ed by

HEX lOH BASE 1 1 to hexac2cimal,

: OCI'AL SH BASE 1 to octal, and

: DEX:IMAL OAH BASE 1 1 back to decimal.

The simple corme.nd n BASE ! can store any reasonable nunber into BASE to

effect numeric oonvetsions.

The word !UMBER is the wc:rkhorse cxmverting ASCII repr esente::l

mnnbers to binary and pw:hing the result on the data stack. The word seque J"lCE

<t ts t > converts a nunber on top of the stack to its ASCII equivalent for

85

output to ter:minal. These wcrds and their close relatives are discussed in

this Chapter. The overall view on the ~ocess of comerting a str:ing to

its binary numeric rEPresentation is shown in Fig. 8.

(NJr-BER)

BEt; IN

1+ IXJP >R

C@

BASE@

DIGIT

WHILE

S>lAP

BASE @ U*

DRCP

ROT

B~E@ U*

D+

DPL @ 1+

dl addrl - d2 addr2

Rllltirre routine of nunber comersion.

Calvert an ASCII text beginning at adc%1+1 according to BASE.

The result is acct.lllUl.atErl with dl to becane d2. adc%2 is the

address of the fitst uncomertable digit.

Save adc%1+1, address of the fiiSt digit, oo return sta:k.

Get a digit

Get the cur rent base

A primitive. (c nl -- n2 tf or ff)

Ccnvert the charccter c aca:>rding to base nl to a binacy

nmnber n2 with a true flag on top of sta:k. If the digit is

an invalid charact~r, cnly a false flag is left on sta:k.

Su:::cessful COI'llleiSion, aco.m.llate into dl.

Get the high order part of dl to the top.

Multiply by base VallE

Drop the high order part of the troduc:t

Move the low order plrt of dl to top of sta:k

Multiply by base VallE

Aa:umulate result into dl

See if IPL is other than -1

86

J

I
J

Fig. 8. Numeric Conversion

Accumulator 0=0
Decimal Pointer

DPLc-1

No

:>--Y_e_s_--.4 Set Sign Flag
Increment DPL

Convert Digit
>-Y_e_s_~ Multiply by BASE t------+-1

Add to D
Increment DPL if

DPL~

No ">----.Ye::.:s~ DP L =0

87

IF

1 DPL +!

ENDIF

R>

REPEAT

R>

.
I

NUMBER

0 0 ROl'

IXJP 1+ C@

2DH=

OOP >R

+

-1

BEX:iiN

DPL is not -1, a deci.Iral ~int was encountered

Iocrenent rPL, cne roore digit to right of decimal paint

Pep adckl+l back to oorwert the next digit.

If an invalid digit was foW'Xl, exit the loop here. otheniise

repeat the oonversion until the string is exha1ste:l.

Pep return sta:k which oontains the adckess of the first

non-convertable digit, add!2 •

addr - d

Cawert character string at addr with a p:-a::ee:ling byte oowtt

to signed double integer nunber, using the cur rent base. If

a deci.nal ~int is ei'lCX)untera:l in the text, its position will

be givE!l in r:PL. If nuneric conversion is not possible, iss1.2

an error message.

Push two zero• s on sta:k as the initial vallE of d •

Get the first digit

Is it a - sign?

Save the flag on return sta:k.

If the first digit is -, the flag is 1, and addr+l tx>ints to

the seoord digit. If the first digit is not-, the flag is 0.

addr+O remains the scure, tx>inting to the first digit.

The ini ti a1. vallE of r:PL

Start the comersion p:-oc::ess

88

lFL !

IXJP C@

BL-

WHILE

IXJP C@

.) 2EB-

0 ?ERRCR

0

IJWP

R>

j
IF IMINUS

ENDIF

1
• I

<t

I
J

PAD

m..o

1

Store the deciml FOint oounter

Cmvert one digit after another until an invalid char occurs.

Result is acOJinul.ated into d •

Fetch the invalid digit

Is it a blank?

Net: a blank, see if it is a decimal paint

Get the digit again

Is it a decimal paint?

Net: a decimal paint. It is an illegal charccter for a nunber.

Issue an error message an:l quit.

A decimal paint was foum. Set D?L to 0 the next tine •

Exit here if a blank was dete:tErl. Ot:hetwise repeat the

conversion process.

Discard addr on stack

Pep the flag of - sign back

Negate d if the fiiSt digit is a - sign.

All done. A d:>uble inte;er is on stack.

Initialize oomeiSion trcx::ess by setting BLD to PAD

The oonversion is d:>ne on a d:>uble inte;er, and prc:duces

a text string at ~ •

PAD is the scratch p!d address for text output, 68 bytes

above the dictiorary hea:l BERE •

BLD is a user varillble holding the address of the last

89

HOLD

-1 HLD +!

HLD @ C!

;

t

BASE@

M/MJD

ROr

9 QVtR.(

IF 7 + ENDIF

308 +

fDLD

. ,

character in the ootput text string.

c-

Used betweEn <i and t > to insert an ASCII chara::ter .

c into a formattEd nuneric output strjng.

Decrenent HLD •

Store chara::ter c into PAD •

dl - d2

Divide dl. by current base. The remainder is convertED to

an ASCII chara::ter am apf2rded to the out pi% text strjng.

The quotient d2 is left on stack.

Get the cur rent base • .

Div ide dl by base. Dalble integer qmtient is on top of data

stack and the remainder below it.

Get the remainder CNe r to top.

If remainder is greater than 9,

make it an alfhcbet.

Ad:3 308 to form the ASCII representation of a digit.

0 to 9 and A to F (or al::ove).

Put the digit in IN) in a rever:sed order. BLD is decre

mented before the digit is rooved •

90

j

1

1

J

l
: ts

BEXiiN

t

OR 0=

ONI'IL

.
I

SI~

ROT O<

IF

2DB BOLD

fNDIF

.
I

: t>

DROP DRCP

dl-d2

Using t to generate the cnnplete ~CII string representing

the rumber dl until d2 is zero. 0~ bebrieen <t and t > •

Convert one digit.

Ccpy d2

d2=0?

Exit if d2-=0, conversion d:me. Otherwise rEPeat.

n d- d

Store an ASCII - sign before the cornerte::l ni.Jllber strmg

in the text output buffer if n is negative. Discard n tut

leave d on sta::k.

Is n negative?

Ad:l - sign to text string.

d - addr count

Terminate rumeric corweiSion by dropping off d, leav mg the

text t:uffer address a.rx3 chara:ter count on sta:k to be tyt:ed.

Discard d.

91

HLD@

PAD OVER-

;

: ~

ODH EMIT

OAB EMIT

.
I

: SPACE

BL EMIT ;

SPACES

0 MAX

-OOP

IF

000

SPACE

ENDIF

. ,

Fetch the address of the last character in the text string.

calculate the charccter count of the text string.

Transmit a carria;~return an:l a lin~feed to terminal.

carriag~Return

Line-Feed

Transmit an ~CII blank to the terminal •

n -.

Transmit n blanks to the terminal.

If n<O, make it 0 .

IlJP n only if n>O.

Don tines

Type a st:ace on terminal

Now we have all the necessary utility wcrds to construct an

ASCII text representing a Cbuble inte;er in whate.rer the cur rent base, we

92

J

J

can show some wcrc:E which type oot numbers i n differEnt ootput fcxmats .

: D.R

>R

d n-

Print a signed double nunber d right justified in a field

of n characters.

Store n on return sta:k.

Save the high order pi rt of d under d, to be used by SIGN

to add a - sign to a negative nunber.

DABS Ccrlvert d to its atsol.tXe vali.E.

<t ts SIGN t > Cmvert the atsol.li:e vali.E to ASCII text with prop:r si91 .

R> Retrieve n fran the return sta:k.

OJER- SPACES Fill the outp\.i: field with pra::eeding blarks.

'r.iPE 'JYp! out the nunber •

• ,

Other nmneric ootput words are derived fran D.R , and not many

c:omnents are nece.ssary.

: D.

0

D. R

;

d-

Print a signed d::>uble integer according to cur rent base,

followed by only one blank (free format) •

0 field widl:h.

93

.R

>R

5->D

R> D.R

.
I

. . .

5->D

D •

.
I

: ?

@ •

.
I

nl n2 -

Print a signed integer nl right jlistified in a field of

n2 characters.

Save n2 en return stack.

A primitive wcrd. Extem the single integer to a cbuble

integer with the sarre si cp.

Forma. ted out:pli:.

n-

Print signed integer n in free format followed by one blank.

sign-extEnd the single inte;Jer.

Free format out: put.

addr-

Print the value contained in adcr in free fornat according

to the current base.

Fetch the nunber ani tyt:e it out:.

A very useful wcrd in r:ro;rarmn.ing ani debugging a FOR'lH pro;rCD is

t."le wcrd OOMP , which durrps out: an entire area of memory as n1.1n~I:S for the

progranmer to inspect. It is also useful in cases where large blcx::ks of data

are stored in contig..tous menory locations. These data can ~ ~ out: on

94

J

J

1

J

l

I

I
I

I

I

the teminal.

: IXJMP

ODO

CR

OOP 8 .R

8 0 DO

IlJP

@

8 .R

2+

LOOP

8 +locP

mcP

.
'

addr n -

Print the a:mtents of n menory cells beginning at addr •

Both addresses and contents are shown in the cur rent base.

DO n tines

Start a ner.r line.

Print the ad~ess of the first cell in this line.

Print the contents of 8 cells in one line.

eq,y addr on stack.

Get the data,

FcrmattErl print in fiel& of 8 chancters.

Ad:lress of next data to be ~ inte3.

Incranent the outer loop count by 8 and repeat.

Discard the last address on the stack.

95

J

J

J

I
)

1
OiAPI'ER IX

DICl'IONARY

In a FORl'H computer, the dictionary is a linked list of nam:d entries

or wcrds which are executErl when called by name. The dictionary consi.sts

of procedure; def inErl either in assenbly oodes (code definitions) or in

high level codes (colon def .initions). It also contains systan inforrration as

constants and variables used by the systan. Insi<E the ~puter, the dic

tiorary is maintained as a sta:k, growing fran low msoory tcwards high marory

as new definitions are c:anpiled or assenbl.Erl into the dictionary. ~n the
f:r om

text interpreter patses out a text string form the inpU; stream, the text is

moved to the tcp of dictionary. If the text is the name of a new def m:i tion,

it will be left there for the c:anpiling process to continl.E. If it is not a

new definition, the text interpreter will try to find a wcrd in the

dictionary with a name matx::hing the string. The word fouro in the dictionary

will be executed or c:anpiled depending on the state of the text interpreter.

'!be dictionary is thus the bulk of a FOR'.IH systan, with all the ne:essary

information to rrake the whole systan work.

'!be dictiorery as a sta::k is maintained by a user varicble nam:d

DP , the dictionary pointer, which paints to the first empty menory location

above the dictionary. A few utility words m:we IP aroun:3 to effect various

97

functions involving the dictiomry.

: HERE

DP@

: AIJJJT

DP +!

;

. . ,

HERE !

.
'

- addr

Fetch the address of the next available maroty location alx>ve

the dictiomry.

n-

Increnent dictionacy J;Ointer IP ~ n, resetving n bytes

of dictionary menory for whate.rer purposes interded.

n-

Store n into the next available ~ 1 alx>ve dictionacy and

advance IP by 2, i. e., canpile n into the dictionacy.

Store n into dictionacy

Point IP al:Dve n just canpiled •

In fact, 1
, ' (COimB) is the zoo st t:r imiti ve kind of a can pile r. With

it theoretically we can build the canplete dictionacy, or canpile anything

and everything into the dictionacy. All the canpiler words and assenbler

words are simple or canplicate:3 derivatives of 1
,

1
• This feature is cleady

reflected in the nanenclat:ure of assenbl.y maroni.cs in the FOR'lH assenbler

in which all mnemonics em with a canna.

98

I
1

I
1

1

J

l

1

1

1

1

For byte oriented processors, c, is defined to compile a byte valt.:e

into the dictionary:

: c,

HERE C!

l 1\LIJ:!r

;

: -FIND

BL 'WORD

HERE

CXNl'EXl' @ @

(FIND)

b-

Enter a l:!{te b on dictionary and inc:ranent IF cy 1.

- pfa b tf , or ff

A.o=ept the next word del imite:3 by blanks in the input s t ream

to BERE , and search the a:J.."TEXT and then the a.JRRENr

vocal:ularies for a match ing narce. If foum, the entry's parer

meter field addre s, a len;th l:!{te, and a true flag are left

on stack. Otherwise only a boolean false flag is left.

Move text string delimita:J l:!f blanks fran int=U: string to the

tc:p of dictiorary HERE •

The address of text to be matcha:J.

Fetc.l) the name field adckess of the last word de£ ina:J in the

a::N1'En' vocatulary and begin the dictionary search.
COD i::.
A). primiti~. Serch the dictionary starting at the adcress

on stack for a name matching the text at the address seco rrl

on stack. Return the 12rareter field address of the matching

name, its length byte, and a to olean true flag on sta: k for a

99

I

rop 0=

IF

DROP

HERE

LA.. ""EST

(FDID)

END:i:F

;

match. If no match is possible, cnly a l:::oalean false flag is

left on stack.

Look at the flag on sta:k

No match in CONI'EXT vcx:abulary

Discard the false flag

Get the address of text again

The nane field address of the last word de£ .ined in the

OJRRENT vcx:al::ulary

Search again through the OlRRENr vccabulary .

Please note the order of the two dictionary seaz:ches in -FIND •

The first search is through the CONl'EXT vocabulary . Only after no matJ::hing

word is famd there, is the CURREN!' vcx:abulary then secuched. This

searching FOlley allows wcrds of the same name to be de£ .ined in different

vocal::ularies. Which word gets executed or canpiled by the text intetpr eter

will depend ut=en the 'context' in which the word was defined. A soi;histica tal

FORrH system usually has three vocabularies: the trudt FOR'lH vocabulary 'Nilich

contains all the systan words, an ED!'IDR vocabulary wich allows a prcgr~

mer to edit his source codes in screens, an an ~SEMELER vcx::abulary which

has all the appro~ iate assenbl.y nneooni.cs and control struc:tur e words. The

progranmer can create his own vocabulary arrl pte all his applications words

in it to avoid conflicts in words de£ ined in the system.

100

I
J

J

J

1

A goOO exanple is the definition of the trmk vccahllary of all the

FORI'H system war cs :

VOCABUIJ\RY FORI'H IMMEDIATE

All vocatularies have to be declare:l lMMEDIATE , so that cxmtext can be

switched d.lring CXJnpilati.on. After FOR'lH is def:inEd as at:ove, wheneJer

FeRrE .is encounterEd ~ the text intetpr eter, the inteipr eter will set the

user variable CINI'EXT to paint to the secom cell of the tarcrreter field in

the FCRI'B definition, ~ich maintains the narre field address of the last

wcrd defined in the FOR'lB vccabulary as the starting wad to be sea.rt:he::l.

Using the Iilrase

FORl'H DEFINITIONS

will set both the CDNI'EXT and the CllRREN1' to paint to FOR'lH vccabulary

so that new definitions will be ad~ to the FCIR'lH vccabulary. The words

vc:x::ABU'URY and DEFINITIONS are de£ ined as:

A defining wad used in the form

VCCABtJI.PRY ex:: cc

to create a new vocabulary with name ecce • Invd<ing ecce

will nake it the context vocabulary whic.~ will be searche::J

~ the text interpreter.

101

OA081H ,

OJRRENT @

CFA,

HERE

vcC-LINK @ ,

VCX:-LINK

OOES>

2+~

Create a dictionary entry with following text string as its

name, and the code field painting to the word after roES>

A d.J.nmv header at vocabulary intersection.

Fetch the parameter field addt-ess painting to the last word

defined in the current vocabulary.

Store its code field adckess in the secon:i cell in paraneter

field.

Ad:Jress of vocabulary link.

Fetch the user varic:Dle VCC-LINK and insert it in the dic

tionary.

Update VCX:::-LINK with the link in this vocabulary.

This is the em in defining ecce vcx:abulary. 'l1le next words

are to be executed when the name ecce is invoked.

When ecce is invoked, the secorii cell in its parameter field

will be stored into th.e variable (l)NI'EXT • The next diction

ary search will begin with the ecce vocabulary.

DEFINITIONS Used in the form

ecce DEFINITlONS

Make ecce vc:x:abulary the cur rent vocabulary. HEnce n&~

definitions will be adcEd to the ecce vocabulary.

102

1

1

I
j

I

The header of an dictionary entry_ is cantnsed of a name field, a link

field, and a code field. 'nle puameter field canmg after the header is the

body of the E!'ltry. The nane field is of varict>le lei13th fran 2 to 32 bytes,

depending on the l~th of the name fran 1 to 31 charccters in the fig-FORl'E

model. The first byte in the name field is the lei13th byte. The first an:l

the last bytes in the na.tte field ha.re their oost sigd ficant bits set as

delimiting indicators. Therfore, kna.~ing the adcress of any of the f iel &

in the header, ooe can calculate the adcresses of all other fiel& . Different

field addresses are used for different purposes. The name field adcress

is used to print out the name, the link field address is used in dictionary

searches, the code field address is use:l by the address interpreter, and the

pa.ri!ll'leter field address is used to access data store:J in the puaneter field.

To facilitate the corwersions between the addresses, a few words are def me:J

as follows:

: TRAvms:E addrl n - addr2

Move across the name field of ~ variable len;th naire field.

addrl is the address of either the len;th byte or the last

character. If ncl, the ootion is taerds high manory; if

n=-1, the motion is taerds low memory. addr2 is the address

of the other em of the name field.

Get addrl to top of stack.

Ccpy n an] add to addr, tninting to t."le next chara:ter.

103

7FH

OVER C@

<

UNriL

.
I

: LFA

4 - ;

: CFA

2 - ;

NFA

5 -

-1 'mAvrns:E

;

PFA

5 +

.
I

Test number far the eighth bit of a character

Fetch the chara:ter

If it is greater than 127, the en:l is rea:he:l.

Loop back if not the em.

Discard n •

pfa - lfa

Coovert the paraneter field address to link field address.

pfa - cfa

Coovert the t:araneter field address to code field address.

pfa - nfa

Coovert the paraneter field address to name field address.

The em of name field

Move to the beginning of the name field.

nfa - pfa

Ccrlvert the name field adcress to t:arareter field address.

Move to the em of name field.

Parcmeter field.

104

j

J

: LATEST - addr

Leave the name field adcress of the last word def :in e:J in the

current vccal:lllary.

aiRRENT @ @ ;

To lccate a wcrd in the dictionary, a sp?Cial word

defined to be used in the form:

(tick) is

ecce

to search for the name ecce in the dictionary.

. .

-Fnm

0= 0 ?ERRrn

DROP

[CCl1PILE]

- pfa

Leave the paraneter field adcress of a dictionary entry with

a name ecce • UEed in a colon defmition as a canpiler

directive, it cx:rnpiles the ilirareter field address of the

wcrd into dictiorary as a literal. Issl2 an error mese.ge if

no matching name is fouro.

Get ecce and search the dictionary, first the oontext an:J

then current vocabularies.

Net foun:J. Iss l2 error mese.ge.

Matched. Drop the len;th byte.

Canpile the next irmediate word LITERAL to o::mpile the

paraneter field address at runtine.

105

LITERAL

.
I

I!KDIATE 1 must be imnediate to be useful in a colon definition.

All the prarious discussions are on words whidl add or cx::mpile data

to the dictionary. In prc:gram developnent, me will a:::me to a point that he

has to clear the dictionary of sane words no lorger nee:Jed. The word FOR;ET

allc:Ms. him to discard sane part of the dictionaty to re:laim the dictionary

space for other uses.

FORGET Used in the form:

FCmGET ecce

Delete definitions defined after and including the word ecce •

The current and context vocabulary must be the sane.

OJRRENT @ CCNI'EXT @ - 18 ?ERRCR

[<Dn>ILE} I

OOP

FENCE @

< 15 ?ERRffi

I:UP NFA

DP !

canpare current with context, if not the sane, isst.e an error

message.

Lcx:ate ecce in the dictionary.

Ccv.f the parcrreter field address

Canpare with the contents in the user varici:lle FENCE
'

If ecce is less than FENCE , do not forget. FENCE gua. rds

the trmk FORl'H vocabulary fran being accidentally for~tten.

Fetch the name f iel. d ad <X ess of ecce, and

store in the dictionary FOinter IP • NCM the top of dict

ionary is redefined to be the fitst byte of ecce , in effect

106

I
J

J
J

J

I
I
1

LFA@

Cl1RRENT @

.
I

. deleting all definitions above ecce •

Get the link field adci':ess of ecce ~inting to t."1e word

just below it.

Store it in the cur rent vc:ca.bulary, adjusting the cur rent

vocab.Jlary to the fact that all defmitions atove (including)

ecce no lon;er exist •

A p?t~erful utility wcrd VLIET prints out the nanes of all entr ies

defined in the amtext vccabulary to allow the {rcgranrrer to peek at the

definitions in the dictionary.

: VLISI'

SOH ClJT

CXNI'EXT @ @

BE:; IN

ClJT @

C/L >

IF

CR 0 aJT

END IF

OOP ID.

List the nanes of all entries in the cxmtext vccabulary.

'nle 'break' key on teminal will terminate the listing.

Initialize the rutput chara:ter counter ClJT to pr in t

128 characters.

Fetch the name field address of the last word in the

context vocab.llary.

Get the output chara:ter count

If it is larger than chara:teiS/ line of the output device,

output a OVLF and reset aJl' •

Tfl::e out the name a..rx3

107

SPACE SPACE add two spaces.

PFA LFA @ Get the link pointing to tr eJ mus word.

IXJP O= see if it is zero, the em of the link,

?TERMINAL OR or if the break key on terminal was r:ressed.

UNriL Exit at the end of link or after break key was pressa:l;

otherwise continue the listing of nanes.

DRCP

.
I

Discard the parameter field address on stack aoo return.

108

l
1

J

j

J

j

OWTER X

VIR'!UAL MEX>RY

In a computer system, the ex>re JIE!!OOty or the senic:orrluc:tar memny

is a limited and ~nsi.ve resource which ~o;ramnets wi.she:l to be inf:ini.te.

Since it is physically iiipossi.ble to hse inf:ini.te anount of msoocy insi.c:E

a cxmtpllter, the next best thing is the Jna<}'let:i.c disc meoocy using hard discs

or flc:ppy diskettes. Because the characteristics of the disc merocy is vet:y

much different fran those of the oore meoocy, the use of elise menocy often

requires some device han::Uers to transfer da.ta or ~o;rcm; be~en the can

puter and the disc. In uost ma.infrCine cx:mputets, discs an:3 other ~riplerals

are treated as files managed by the Op!rati.ng systan, W'lich insulates the

progrcmmers fran the devices. The usage of the disc merocy in high level

language. thus needs a fair anount of software overhea:3 in terns of menory

spice and execution Sp!e:l.

FtRI'B treats the disc as a dira::t exterlS!lon of the core mem::>ry

in blocks of B/BUF t:¥tes. A pro;rmarcer can reed fran these blccks am write

to them much the sane as he is reeding or writin9 the core memory. Thus the

disc memory becomes a virtllal menory of the cx:mputer. The ~o;ramrrer can use

it freely without the l:urdens of addressing the disc a.OO managin; the I / 0.

Implanenting this virtual nsnory cxmcept in the ~ syst an makes available

109

the entire disc to the progranmer, giving him essentially unlimited memory

space to solve his prcblan.

Disc memory in FORrH is organized into bla::k-5 of B/ BUF bytes. The

blocks are numbered sequentially fran 0 to the disc capacity. FOR'lB systan

rraintains an area in high menory as disc buffets. Data fran the disc are

read into the buffers, and the data in b.lffets can be written back to disc.

As irnplanented in the fig-FORm IOOdel, each disc buffer is 132 bytes lorg,

corresp:mding to 128 byte/ sectcx in disc with 4 bytes of b.lffer information.

' The length of b.Jffer can be chan;ed by ncdifyi.ng the constant B/BUF which

is the rn.li!lber of bytes the disc spits out each time it is accessed, uslally

o~ sectcr. P/BUF must be a pa.Jer of 2 (64, 128, 2$, 512, or 1024). The

constant B/~ contains the val.l.l! af the nunber af bla::ks per sa-een which

is used in editing texts fran disc. B/~ is equal to 1024 divi<Ed by

B/ BUF • Disc b.Jffers in menory are sdlanat:ically shown in Fig. 9, assllil:ing

that each b.Jffer is 132 bytes lorg.

Seve.ral other user variables are used to maintain the disc buffets.

FIRSr and LIMIT define the lower a.rxi upp!r boun:Js of the buffer area.

LIMIT - FIRSr must be multiples of B/BUF + 4 bytes. The variable PR.E.V

points to the aderess of the buffer which was rost recently referenced, and

the variable USE points to the least referenced buffer, which will be used

to receive a new sector af data fran disc if requested.

The most imp::>rtant and the roost used wcrd to transfer data into and

llO

I
J

Fig. 9. Disc Buffers

LIMIT
0

PREV- luiBlock#
0

U: UPDATE Bit luiBlock=
0

USE ---+ U IBlock:

. . .

. . .

. . .

0

FIRST UI Block#

Tail

of Datal 128 Bytes

Head
Tail

128 Bytes of

Head
Tail

J
.1

Datal

128 Bytes of Da ta

Head

Tail

128 Bytes of

Head

111

Last Bu:: fer-

First Buffer-

out of the disc is BLcx::K • BLcx::K calls another wa:d BUFFER to

look for an available buffer. BUFFER in turn calls a };Ximitive word R/W

to do the actual work of reading or writing the disc. These and other

related wa:ds are to be disOJssed here. A flow chart of BLO:::K is shown in

Fig. 10 for better comtr ehensi.on.

BLOCK

OFFSET @ +

>R

!'REV@

OOP@

R

CUP +

IF

n - addr

Leave the memory address of the disc buffer contaming data

from the n'th blc:ck in disc. If the bla:k is not already in

memory, it is read fran disc to the least re:entl.y written

disc b.lffer. If the contents of this disc buffer was marked

as updated, it is written back to disc before the n' th bla:k

is read and written over data in the buffer.

Ad:J disc offset to bla:k nunber n, allowing access to se:om

or higher di~ drives.

Save the bla:k nunber on return sta:k.

Get the bla:k nunber containEd in PREV, p::>inting to the JOOSt

recently accessed buffer.

Get the bla:k nunber paintEd to by PREV ,

Canp:~.re to the blc:ck nunber saved on return sta:k,

Discard the left JOOst bit, wich is the upd:l te indica tor.

Bleck nunber n was not };Xeriously referenced. Pre};are disc

access.

Scan the b.lffers and lock for a buffer which might contain

block n alreac¥.

112

1

J

l

1

I

Yes

No

Fig. 10. BLOCK

No

Examine Block
Number in Next
Disc Buffer

No

Yes

Put Buffer Data
Address on Stack

Yes

All Disc Buffers Scanned
None contained Block N

Write Buffer Contents to Disc
if Buffer was UPDATEd

Read Block N from Disc to
this Buffer

Store N in Block Number Cell
(Head of Disc Buffer)

113

+EUF 0=

IF

DROP

Advance a buffer

This b.lffer is !X)inta:J to by PRE.V , all tuffers sc.3nne:i.

Discard the buffer address

R BUFFER Find t."'le disc sector, update the sector if necessary.

roP R 1 R/W Read one sector fran the disc.

2 - Backup to the t:uffer address of block n.

ENDIF

OOP@

R-

OOP + 0=

UNI'TI.

roP PREY

ENDIF

R> DRCP

2+

;

Beginning address of the buffer, with a blcck number in it.

Canpare to the blcck ni.Jtlber n.

Discard the update bit,

Loop until buffer blcck nlJ'Clber matches n.

store the buffer adcress in PR£V •

Clear r et:urn sta: k.

Get the address where data begin.

To access a disc blcc k, ate uses the cani'l'al'Xi:

The word BLCX:K leaves the address of the fiz:st cell a:mtaining data read

fran the disc, and the user can now examine the infornation in this entire

block. If he alters any data in this blcck, he should nake sure that the

upjate bit in the cell pre:eeding the data is set by using the canman:i

UIDATE • This wey new data will be written back to disc before the buffer

114

I
1

I

is used to access some other block of data.

: +WF

B/BUF 4 +

+

OOP LIMrT c

IF

DRCP FlRSl'

mDIF

OOP PRE.V-

.
I

: BUFFER

USE@

OOP >R

+RJF

addrl - addr2 f

.Ac:::tvance the disc b.lffer adc%ess addrl to the address of the

next blffer addr2 • Bcx>lean f is false when addr2 is the

tuffer presently pointED to by the varicble FREV •

Size of a buffer

Yes, l::llffer out of boum.

Make addr2•FIRST

LEave boolean flag on stack.

n - addr

Obtain the next block blffer an:J assi.g1 it to blo:k n •

If the contents of the buffer were marked as upca tED, it is

written to the disc. 'ttle blcck n is not read fran the disc.

The address left on sta:k is the fitst cell in the buffer

for data storage.

Fetch the user variable USE •

Save a COP.f on return stack.

Find the next buffer, avoiding the buffer paintED to by PREV

115

UNI'IL

USE !

R @ 0<

IF

R 2+

Store the address to be used the next tirre.

Test the fiiSt cell in the buffer. See if the up&.te bit

is set.

The bJ.ffer was updata:l. Write its contents back to disc.

The f iiSt cell of data menory.

R @ 7FFFH AND Disard the upd!te bit. What's left is the block nllnber of

the up:iated b.lffer.

0 R/W

ENDIF

R !

R PREV

R> 2+

. ,

R/W

Write the bUffer to disc to upd!te the disc stora;e.

R/W is the primitive word to read or write a sector of disc.

Write n to address pain ta:l to by USE •

Assign this buf~r as PREV •

addr painting to the fiiSt data cell in the buffer.

addr n f -

This is the fig-FORI'H stan:Jard disc reed/write linkage. adc%
.

st:ecifies the source or destination block buffer, n is the

sequential block mnnber on disc, and f is a flag. f=O far

disc write and f=l for reed. R/W calculates the litYsical

location of the blcx:k on disc, perforns the reai or write

operations, and ooes an error cha:k:ing to verify the trans-

action.

R/W is a primitive word whose definition det:en:ls on the CPU

116

I
j

I

J

J

l
1

and the disc interfacing harcware.

As mentiored before, each blffer h~ B/BUF + 4 bytes of tret'Ory. The

first cell in the buffer amtains a disc .bla::k. nll'll.ber in the lower 15 bits.

'lhus the FORrH systen can adcress up to 32767 blocks of virtual merory. The

msb or 16th bit in this cell is call the 'up:iate bit'. wren this bit is set

by the word UIDATE , the FOR'm systen will be noti.fie3 that the contents

in this buffer were altere:3. M-en the menory stace af this buffer is neEDed

to receive another bla::k. of data, the upd:lte bit when set causes the buffer

to be written back to the disc before the other bla::k is rea:3 in. It is this

update bit which controls the disc systen so that the disc alWiys h~ the

data kept up to aate. If the upd:l te bit is not set, the contents in the

blffer should be identical to those on the disc arxl there is no neEd to

rewrite the blffer back. to disc. Bmce the new block is directly reed in

and overwriting the old block blffer.

The data of B/BUF bytes start at the secorrl cell in the buffer. Tre

last cell should always be zero, ltlich is the stop si<}'lal to the cx:mpiler.

The prograraner should be vecy careful not to chan;;e this cell. If this cell

is not zero, the cx:mpiler might cx:mpile across the buffer boun:laries arrl

most likely wo.Ud cause the systen to crash. A null byte in the text string

will force the text intetpr eter to execute the WLL or 'X' wcxd, which

teoninates the cx:mpiling process arxl returns control to the text interpreter.

: UIDATE Mark the rrost ra:ently refer~d disc buffer, p:>intoo to by

117

PRE.V @ @

8000H CR

PR.E.V as altered. This b.lffer will subsequently be writ ten

back to disc should it be required to store a different

blcx:k of data.

Fetch the fiiSt cell in the buffer painted to by PRE.V •

Set the up&. te bit.

PRE.V @ ! Store back.

.
I

EMP!'Y-BUFFERS Erase all disc buffers. Up:iatEd buffers are not written back

to disc. This wcrd is used in case the prcgramrrer knows that

FIRSI'

LIMIT

avER-

ERASE

;

the blffers were disturbed and he wishes to .treserve the

unmodified data on disc.

Start of blffer

Em of blffer

Lmgth of tuffer in bytes

Clear the buffetS by writing zeros into than.

In cases where more than one disc drive is used in a systan, a user

variable OFFSET is maintaJne:i so that the user can easily access the secon:i

cr higher drives as cx:>nvenientl.y as the fiiSt drive. OFFSET contains the

first blcx:k number of a tarticular drive.

defined to switch between disc drives:

DRO 0 OFFSET .
I

ll8

~ words oro and DRl are

: DRl 2000 OFFSET 1 :

In this case the first drive has 2000 sectcrs of storage vol~..me.

: FLtEB

NBUF+l

000

0 BUFFER

IRCP

IOOP

. ,

Write all upd:lta:l buffers back to disc.

Total mmber of blffers + 1

Go throu;h all blffers

Farce upd:lta:3 buffers to be written back to disc.

Discard the buffer data address.

Disc storage is usa:l for two principal purposes: to store prcgram

text, and to store data. ~ storing and retrieving of data are topics

of application outside the SCDte of this boc:K. Basically, the data flow

to and fran disc can be amtralled by the word BLO:K and its rel.a ti '.ies as

discussed previously in this Chapter. On the other hand, FOR'lB has pre» id=d

Sp!cial mechanisms to process program text stora:l on disc. The text inter

preter can recognize input text either fran the terminal of fran disc bla:ks

and it interprets or <XJnpiles than in a similar fashion.

A user variable BLK contains the blc:ck n\JI\ber if the text t o be

interpreted comes fran th~ disc bla:k of that nunl:er. If BLK contains a

zero, the interpreter Will assu:ne that the in~ text is fran the terminal.

'nle connend to interpret text in bla: k n is:

119

BLK @ >R

rn@ >R

orn1

B/5rn *

BLK !

INrmPREr

R> rn .!

R> BLK

;

n LClAD

n-

Begin interpreting screen n • Leading will be termma ted at

the end of the screen or at ;S •

Save BLK on return stcck. BLK contains the cur rent blcx:k

number under interpretation. Saving it allows one disc blcx:k

to lead other disc blcx:Jts, the nested loading.

The chara:ter painter painting to the next word to be inter

preted has to be saved also.

Initialize rn to paint to the beginning of text bla::k.

Find the blcx:k mmber fran the screen nunber n •

Store the blcx:k nunber in BLK •

Call text interpreter to J;Xocess the text blcx:k.

After intetpr eti.ng the whole blcx:k, restore m and BLK •

As discussed in ~ , WORD takes its inpli: fran the ternrinal.

if BLK is zero; otherwise it calls BI.OCK to bring in a blcx:k of text fran

disc and starts interpretation at the beginning of the bla::k. In ecch disc

buffer the first cell (the hece) contains a bla::k mmber with its msb as the

up:late bit, and the last cell (the tail) contains a zero. After the text

interpreter scans over the entire blcx:k, it will e~entually pick up the tail

120

I
1

J

1

of zero. The interpretation will be teoninated at this point because the

zero farces the intetpreter to execute the NJLL or •x• wa:d which pr .ints
'f ,,

ok on tenninal and retllrns control to the terminal. To terminate the inter-

pretation before the end of a block, the word :s should be used in a

text block.

saving BLK and IN m the r etllrn sta::: k allows the nesting of WFSD

canrrands. In a block of text, n LCW> can be used to sust:em tanporarily

the loading of the cur rent block aJ'Xl start loading text fran the n• th blcx:k.

'nle general practice in mst FOR'lB systans is to resetve a blcx:k containing

nothing but load cannarrls. 'Ibis is called a load blcx:k. wren the load blcx:k

is leaded, it will load in all the blcx:ks neEded for an application, like a

bootstrap routine in a conventional a:mp~er.

In a large project the pr<Xjram text s{r ecrls over many blocks. If the

text is sequential cner a ran;e of blocks, a word - > can be used to

continue interpretation across the block b:>urdary to start interpretation

of the next block.

- >

'?LC::lADIN:;

OIN1

B/ SCR

BLK@

Pronounced •rext screen". Cmti.n~.e interpretation with the

next disc block.

Issue an error message if not loading.

Initialize IN , the chara:ter painter.

Blcx:ks/ screen

121

BLK +!

.
'

IMMEDIATE

In::ranent value to the ~xt block.

New block nunber stora:i in BLK •

The crosSOier of block bounjaz:y must be exe::ut:a:i irmediately.

er
If the texts are not written in sequential blocks, a loadA block

should be used instead of the -> canrcan:l. The load blcx::k with aptrotr iate

comrtents serves also as a dira:tory of the blcx::ks involwd in an application.

: IM/ii£DJ4TE (- --)

L ATEST 4-0J.I fOCt--6-L£. ;

A LoA PIER. 13LacK 0 r<. 5 c t<t:::E:N Co UL..D E,£ THe: r-o LLOWIN6

~Ia LoA o 67 LoAD 4- 1 LoAD 4-2 LoAD I q LoAD

TH15 L~t.JC OF TexT W'ovL..b g~ Ir-.J S A'(5c((E.£N <B1, So ALL
)

~ov N t=:t::D lo T'tPE- Now Wovt-o gE. 2> '1 Lo AD

122

J

1

1

J

J

CW'l'ER XI

DEFININ:i wc:IRm AND THE CODE FIELD

The FORl'B langauage is a major synthesis of many cxmcepts an:! te:hni

ques used for sometine in the cx:mputer industcy, such as sta: ks, dictionary,

virtual memory, m1d the intetpreter. The single mst inportant invention by

Charles Moore in developing this l.arguage which wr~{Ed all these elements

and rolled them into a snal.l yet powerful o~rati.ng systsn is the code field

in the header of a def mition. The CDde field contains the address of a

routine to be first executEd when the definition is called. This routine

determines the chara:teristics of the definition, and intez:prets the data

stored in the paraneter field accordingly. In the basic FOR'm systan, ml.y

a very stall set of code field routines are definEd arX! are usecl to create

many ty}:es of definitions often used in tra;rat1IIUng. The tTies of de£ mi

tions comnonly used are ex>lon def mi tions, ccxle definitions, ex>nstants, and

variables.

'!he most interesting feab.lr e in the FOR'IH la.rguage is that ma:hinecy

used to define these def ini tons is aca:ssi.ble to the p:a;ramrer for him to

create new types of definitions. The mechanism is sinply to define new code

field routines which will a:>rre:tly interpret a new class of words. Tte

freed:)m to create new tTies of definitions, or in a mind lx>ggl.ing tx'lrase-to

123

defL11e defining wcrds- was coined as the 'extensibility' of FORI'H language.

The process of adding a nS\f defmi.tion to the dictionacy-create a hecder,

select the address of a code routine arxi put in the code field, and canpile

data or addresses into the tarameter field-is terned 'to defme a word'.

The words like ' : ' , CODE , CCNSI'JNT , VM.IABU: , etc., which cause a new

word to be defined or canpiled into the dictionaty, are thus called def ming

words. The process of generating a word of this kind, the def mi.ng wcrd, is

'to define a defining wcrd'. OUr subject in this Chapter is how to def me

a word which defines a class of words.

To create a definition , two things must be d::>ne p:ofedy: one must

sr;ecify how this def mi tion is to be cxmpiled or how the def :ini tion is to be

constructed in the dictionacy; and sp:cify mw this def mi.tion is to be

executed when it is called by the address interpreter. Cmsequentl.y,

the wcrd which creates defining wcrds consists of two tarts, me to be used

by the compiler to generate a def mition in dictionacy arxi the other the

routine to be executed when the def mi. tion is called. All wcrds generate:i

by this defining wcrd will have code fields contaWng the same address

p:>inting to the same runtirre routine.

There are two ways to def me new def mi.ng wcrds. If the runtirre

routine J;:Ointed to by the code field is to be defined in mcchine assenbl.y

codes, the format is:

ecce ; COIE assenbl.y nneoonics

124

1

J

I

]

I
If rt:ntilre routine is coded in high level wcrds as in a colon definition,

the format is:

: ecce <HJILDS DOES> ;

In the al:ove formats, ecce is the name of the new de:f ining wa:d,

denotes a series of t:re:lefma:i wcrds, and 'assanbly nnanoni.cs' areassanbl.y

ex>des if an assembler has been def ma:i in the dictionary. If there is

no assembler in the FOR'lH systan, uachine a:x:les in numeric form can be

compiled into the dictionary to ex>nstruct the runtine code routine.

Executing the new defining wcrd ecce in the form: ··

cccc nnnn

will create a new definition nnnn in the dictionary am the words de nota:!

by - up to ;<IDE or OOES> are executa3 to cx::mplete the p:ocess of

b.lilding the definition in the dictionary. The code field of this new def ini

tion will contain the address of the routine irrrrediatel.y following ;OJDE

or DOES> • CQ'lsequently, \ltlen the newly defma3 wcrd is called by t."Je

interpreter , the runtine routine will be executa3.

The above discussion might be sanewhat confusing because of the

context of defining a def ming wcrd. It is. The best way of eJCplaining how

125

the concept wcrks is probably with a lot of exanples. Ha: e we shall start

with the f ig-FOR'l'H def ini tic ns of ;CODE , <EOILDS , and DOES> ,
followed by the two siirple def ming wcrds a:NsrJNT and VARIABI.E • The

most useful defining wcrd 1
:

1 was disrussed pr67 :iDusly in Chapter 5 an

compiler . It should be re.riewed carefully.

;CODE

'?CSP

<XMPILE

(;CODE)

[CCMPILE]

SMUI:GE

.
'

IMMEDIATE

Stop canpilati.on and terminate a rew defining wcrd ecce

by compiling the runti.rre routine (;CODE) • Asaenble the

assembly mnemonics following. Used in the form:

: ecce - ;COIE assanbly maoonics

Check the stack pcinter. Iss1.2 an error message if not equal

to what was saved in CSP by 1
:

1
•

Wren ;COIE is executa:i at runtirre, the address of the

next wcrd will be canpiled into dictionacy.

Rmtime procedure whidl canpletes the definition of a new

defining wcrd.

Canpile the next izme:iiate word instecd of executing it.

Return to executing state to assanble the following assembly

mnemonics.

Toggle the snudge bit in the lergth byte, and canplete the

new definition •

The class of definitions creata:i by using ecce in the form:

126

1

1

1

1

J

I
1

I
I
I

ecce nnnn

will have their a:x3e fields pointing to the a:x3e routine as assenbled by

the mnemonics folladng ;CODE in the cEf mi tion of ecce • The word nnnn

when called to be executEd will first jurr;;> to this a:x3e routine arx:l execute

this routine at runtine. What will hapt:en aftetwards is totally depement on

this code routine. 'nle IXesence af the a:x3e field arx:l h~ the execution of

the oode routine after the word is called gives FOR'lB J.a.n;uage a similarity

to an indirectly threcd!d coded systan. The a:x3e f iel d allows pr 03 r anrre ts

to extend FORI'H language to cEf ine new data structures or new cxmtrol. struc

tures which are pra::tically inpossi.ble in any other high level larguage.

1bis property is called the extensibility of FOR'lH larguage.

: (;CDDE)

R>

LATEST

PFA CFA

.
I

The runtine {Xocedure canpiled by ;<DIE •

Rewrite the code field of the rost rs::ently defined wcrd to

point to the following machine oode sequence.

Pq> the address of the next instruction off the return sta:k,

which is the starting address of the runtine a:x3e routine.

Get the name field address of the word urx:ler construction.

Fin:l the code field address arr:3 store in it the address of

the code routine to be executed at runtine •

The pair of wards <BJILDS --DOES> is also used to clef ine nav

127

def ining words in the fcrm:

ecce <BUILDS - DOES> - ;

the difference from the ;CDIE oonstruct is that <ElJILDS-OOES> gives

prograraners the oonveni.ence of def ming the code field routine in tenrs of

other high level def mitions, savmg them the trouble of ooding these

routines in assembly nnaooni.cs. Using high level words to def me a def ming

word rrakes them portable to other typ!s of canputeiS also SJ;Eaking FORm.

The price to be paid is the slower sJ:Eed in executing wcrds def ma:i by these

de£ ining wcr ds.

satisfaction.

<BJILDS

o CXNsrmr

;

OOES>

This is the tradec£f a progrcmner must weigh to his own

wren ecce is executed, <WILDS will create a new hea:Jer

fer a definition with the nane taken fran the next text

in the inplt stream.

Create a new entry in the dictionary with a zero in its

paraneter field. It will be replaced by the address of the

.code field routine after OOES> when OOES> is executed.

Define runtirre routine action withm a high level def .ining

wcrd. OOES> alters the code field am the fiz:st cell in the

paraneter field in the def wing wcrd, so that when a new

wcrd created by this def ming wcrd is called, the sequena!

128

J

J

J

1

I

R>

LATEST

PFA!

:CDDE

OOOOE: MJV

of wa:ds cx:mtpiled after 005 > will be execut8J.

Get the address of the fitst word after OOES>

Get the name field address of the n&r def :inition un:Jer cons

truction.

Store the address of the runtine routine as the first tarcr

meter.

Wl"en roES> is execut8J, it will fiz::st d:> the following code

routine because :a:a: tuts the next address into the c:ode

field of CODE>. •

IP,- (RP)

(W) +,IP

w,-(s)

PlEh the address of the next instruction on return

stack.

Put the address of the runtine routine in IP •

W was inc:renent8J in the last instruction, p:>inti.ng

to the paraneter field. PllSh the fiz::st tarcneter on

stack.

In fig-FCRI'H model, there are three often used def :ini.ng wcrds besiee

':' and CODE : CDNSI'J.NT , WRIABLE , and USER • They are thansel. ves

defined:

n-

Create a new word with the next text string as its nane arri

wit.~ n in~rt8J into its tarcm:ter fiel.C.

129

,
;a:IDE

Create a new dictionary header with the next text string.

Toggle the smudge bit in the len;th byte in the name field.

Canpile n into the p!rcmeter field.

The code field of all oonstants def inai by ~SI'JNT will

have the address of the following code routine:

IXXXN: mv (W) ,-(S) Push the oontents of p!raneter field to the stack.

Return to execute the next word.

Used in the follc:Ming form:

n ~SI'ANI' ecce

to define ecce as a oonstant. wren ecce is later called, the vallE n

will be pushed on the data stack. This is the best way to store a oonstant

in the dictionary for later uses, if this oonstant is used often. Wl'en a

number is compiled as an in-line literal in a oolon defmi.tion, 4 bytes are

used because the word Lrr must be canpile before the literal so that the

address interpreter wa.U.d not mistakenly intetpr et it as a word address.

The overhead of defining a oonstant is 6 bytes am the bytes neeJed for name

field, averaging to aboot 10 bytes per def mi. tion. If the oonstant will be

used more than thrice, savings in memory spice justify the defining of a

constant.

: VMIABLE n-

130

I
1

J

1

1

;roDE

Define a new wcrd with the following text as its narre arrl

its :taraneter field initialize:J to n. Wb!n the ne.v word is

executed, the paraneter field address in steed of its content

is pushed on the sta::k.

Create a dic:t.ionacy header with n in the tarareter field.

catlpiling action in def ming a variable is icentical to that

of defining a constant, b.lt runtirre beha.rior is different.

Code field in a varici:>le paints to following code routine.

r:tJ./Nl. : fiOV W,- (S)

NE:XT

Push the p3.rareter field address on data stack.

Variables are defined by the following canmarrls:

n WRIABLE ecce

When ecce is later executErl, the address of the varict>le is puS'le:l on the

data stack. To get the cur rent vallE of this variable, me should use the @

canrrand :

ecce @

and to chcr1ge the value to a new one nl.,

nl ecce

131

USER

;CODE

n-

Create a user variable with n in the parameter field. n

is a fixed offset relative to the user area painter UP for

this user varicble.

The runtine code routine is labelled as IXIJSE

IXlJSE: WJV (W) ,-(S) Pt.Sh n on data sta:k.

ADD UP, (S) Ad:i the base address of the user area.

NEXT Return. N011 the top of data stack has the address

tx>inting to the user varici::lle.

After a user variable is def ine:i as:

n USER ecce

the wcrd ecce can be called. Wl:en ecce is executm, UP+n will be pushe:i

on the data stack and its contents can be exarninm by @ or IOOdified by

132

1

I
j

I
l
1

CHAPI'ER XII

Most definitions in the FOR'lH dictionacy are def mErl by the oolon

1
:

1 wcr d. They are called colon definitions , FOR'lB def mi. tions , or high

level definitions. When the text interpreter sees the word ': ', it creates

a header using the text string following colon as the name and then enteiE

the cx:mpiling state. In the CXJnpilmg state, the text intexpr eter rea:ls in

a text line fran the in~ stream, parses out strings del imitErl by blanks,

and tries to match than with dictiona.cy entries. If a string na tr:hes with a

dicionary entry, the oode field address of the matching wcrd is ad~d to the

par5neter field of the new def mition umer construction. Thi. s is what we

call the compiling precess. The cxmpiling precess erxis when the terminating

word . , or : CDIE is de ta:t Erl.

When a colon definition is later executEd, the word addresses in its

paraneter field are exe::utErl by the address interpre~r in order. If it is

necessary to alter the sequential execution trecess at runti.rre, special word

has to be used in the CXJnpiling precess to set up the ~hinecy of branching

and locping, to build the oontrol structures or t:ro;ram oonstruc:ts in the

colon definition. These st:eeial. words are equivalent to cxmpiler dire::ti ves
-

or assembly directives in oomentional a:mp~er lan;uages. These words Cb

; l-MM£DIAT£ (--) LAr£sT 4-0H ToGr&L £ ;
133

do not become tart of the compiled definition, tut cause SJ;:ecific actions

during compilation to tuild the control structure into the defwtion ani

to ensure its correct execution at runtine. Trese SJ;eeial. words in FOR'lH are

characterized by the fact that they all have a pre::edence bit in the len:;th

byte of the name field set to one. Words with pre:edence bit set are called

imrediate words because the text intetpr eter turns these words over to the

address interpreter for execution even dur inq canpila tion.

In this Chap:er, we shall co nee r:n ourselves with the means by which

the following control structures are built in a colon defwtion:

smm

smm WHILE REPEAT

and 00 - I - LEAVE - I.OCP

However, before discussing the detailed def w tions of these words, a few

utility words should be presented to make the discussions xoore intelligible.

The words ca.tPILE and [CCMPILE] are used to handled SJ;eeial. canpiljng

situations. The wcrds B~ and OBRANOI are the which

get compiled into the def .ini.tion to oo the branchjng ani loopi.ng.

Words in a oolon def.ini.tion are normally canpiled into dictionaty

or have their code field address stuffed in the paraneter field of the colon

definition under compilation. Sanetirres this canpilati.on should be delayed

to the runti.Ire, i. e., the word is to be canpiled not when the colon def mi.-

134

J

tion is being canpiled, b.lt when the oolon definition is later executed. To

defer compilation mtil runtine, the word CG1PILE must {re::ee::l the word.

: cniPILE

IlJP 2+ >R

@ ,

• I

Defer CXIIIpilat:ion until runtine. wren the word contaming

CCMI?ILE is execut e::l, t:h e CDde f iel. d adcr ess of the word

follo.dng CCMPILE is oopi.ed into the dictionary at ru~

tine.

Error if not CXIIIpiling.

Tq> of return sta::k is painting to the next word following

CCMJ?ILE •

In:renent this p:>inter t:¥ 2 to paint to the seoorrl wcrd

following CC>1PILE , which will be the next word to be

executed. The word inm:!diately following C01PILE should

be compiled, not executed.

Do the CXIIIpilat:ion at runtirce.

Imnediate wcrds, because of their pre::ederlC2 bits, are execute:J

dlring compilation. HowerJer, if one wante::l to use the word sequence in an

inrnediate ward as a re;ular oolon def mi. tion, i. e. to CXIIIpi le it in-line,

the wcrd [Cllt1PILE] can be used to force the following iiT'I!IEdiate word to

be compiled into a definition. The word [CCMPILE] is used in the form

. . xxxx [CCMPILE] ecce .
I

135

in which ecce is the name of an imnediate weed.

: [CCl1PILE] Force the compilation of the following iimEdiate word.

-FIND Acx::ept next text string arx3 search dictionary for a match.

0= 0 ?ERRCR

DRCP

CFA,

.
I

I MMEDIATE

No matching entry was found. Issl2 an error message.

Discard the len;th byte of the foum name.

Ccnvert the name field address to code field ad<Xess arxi

compile it into the dictionary •

The two wee c:S chan;; ing execution seque l"lCe in a colon def .initio n

are BRANCH and OBPANCB , both are primitive CX>de def mi tions. They

are of such im};OrtanCE that I feel they should be treata::i fully. The codes

are from PDP-ll fig-FORl'B.

OJDE The runtie t:rocedure to branch unoomitionally. An

in-line offset is ad~ to the intetpretive pointer

IP to branch forward or backward. BPANCB is

compiled by ELSE , N:iAIN , and REPEAT •

ADD (IP) ,IP AcH the contents of the next a:Ul pai.nta::i to by IP

NEXT

to IP itself. The result is put back to IP

which p:>ints to the next word to be executa::i. The

next weed can be out of the r93Ular execution order.

Return to the word pai.nta::i to by IP , canpleting

136

j

I
I

1

I
1

CODE OBRAN~

'1ST (S)+

BNE ZBFAl

the uncorxlitiona.l brandling.

f --

'!be rll'ltine proc:edur e to br anc:h corrlitionally. If

f on stack is false (zero), the following in-line

offs:t is add:d to IP to branch forward or

backward. canpil ed cy IF I UNl'IL I and W8ILE •

Test the flag f on sta:: k.

ADD (IP) , IP f is zero, do the brandling.

NEXT

ZBPAl: ADD 12,IP f is true, skip the in-line offset. Pick up the

or

wcrd following the offset am continlE execution.

NEXT

Ccnditiona.l branching in a colon def :ini tion uses the forns:

IF (true part)

IF (true tart)

ENmF

EI.SE (fals: tart)

At runtime, IF selects to execute the true tart of words imrrediately

following it, if the top item on data sta:k is true (ron-zero) . If the flag

is false (zero), the true tart will be skip~ to after EI.SE to execute

the false part. After executing either part, execution res\.Illes after

ENDIF • ELSE and the false put are ot=tional. If ELSE part is missing,

137

execution skips to just after ENDIF •

IF At runtine

Canpil e time

f --

- addr n

It ex>mpiles OBFANCli and reserves one roore cell for an

offset value at addr • addr will be used later to resolve

the offset vall.l! for branching. n is set to 2 for error

checking when ELSE or ENDIF is later canpiled.

CCMPILE OBPANCH Conp;ile the code field address of the runtine routine

OBPANCH . into the dictionaty when IF is exe::uted.

HERE PUsh dictionaty address on sta:k to be used by ELSE or

ENDIF to calculate brandlmg offset.

0 ,

2

;

IMlwEDIATE

ENDIF

?COMP

2 ?PAIRS

canpile a dlmmf zero here, later it is to be replaced by an

offset value used by OBRANOI to canpute the next word

address.

Error che:king nunber.

IF in a ex>lon definition must be exe::uted, not canpiled.

Canpile tine addr n -

Canpute the forward branching offset fran addr to HERE

and store it at addr • Test n to rratch the prer :ious

IF or ELSE in the definition.

Issue an error messge if not canpiling.

ENDIF must be paired with IF or ELSE • If n is

138

J

J

J

I
]

l

HERE

ovm-

.
I

nH:DIATE

: ELSE

2 ?PAIRS

rx>t 2, the structure was disturbed or i~oJ;edy neste:J.

Issue an error message.

Pl.Eh the current dictionary address to sta:k.

BERE-addr is the forward branc:hjng offset.

Store the offset in addr thus cnnpleting the IF-El'-."DIF

or IF-EI.SE-ENDIF construct •

canpile tine addrl n1 - addr2 n2

canpile BRANCH and reserve a cell for forward branctling

offset. Resolw the teming forward branching fran IF

~ ex>mputing the offset fran addrl to HERE and storing

it at addrl •

Error che::kjng for p:oJ;er nesting.

a::MPILE BPANOI canpile BRFNCB at runti.ue when ELSE is execute:J.

HERE

0 ,

&lAP

[CC!-D?ILE] ENDIF

2

.
I

IMl-EDIATE

Pl.Eh HERE at stack as adc%2 •

IUrrr!f zero reserving a cell for brandling to ENDIF •

Move addrl to top of sta:k.

call ENDIF to wcrk on the offset for forward

branching. ENDIF is an iJT'It'ediate word. To CXJnpile it the

wcrd {CCMPILE] must be used.

Leave n2 at sta:k for error che::k.ing.

139

Indefinite locps are to be constructed using the follOO.ng forns:

BEniN

or BEniN WHILE REPEAT

BEniN simply leaves the current dic:tiona.cy address on stack for um'IL or

REPEAT to pickup and to a::xnput:e a backward brandling offset at the en:l of

the locp. WHILE is similar to IF in that it skips to just after

REPEAT if the flag on stack at that paint is false, thus termmating the

indefinite locp from insi..ee the loop.

the end of the loop.

UNl'IL ternrinates the loop only at

1

. ,

BEniN

IMMEDIATE

BPCK

Canpile tine - addr n

At CDmpile time BEniN leaves the dictiona.cy address on

stack with an error checking nunber n. It ooes not a:mpile

anything to the dic:tiona.cy.

Issue an error message if not a:mpiling.

Ptsh dic:tiona.cy 'tX)inter on stack to be used to a:mp~e back

ward branchiD3 offset.

Err or checking nunber.

addr -

140

J

l

HERE- '

;

: UNTIL

A nntime procedure computing the backward branching offset

from HERE to addr on sta:k, and canpile this offset

value in the next in-line oell in the dictionacy.

addr-BERE, the backward branching offset.

Canpil e tine addr n -

Canpile OBRANai and an in-line offset fran HERE to

addr • n is testerl. If not equal to l, there is an error

in the nesting structure.

1 ?PAIRS If n is not 1, isste an error mesege •.

<Dfi'ILE OBPANCB canpil e OBPAN03 at run tine.

BACK Canpute backward branching offset arxl canpile the offset.

When the colon definition containing the BEI;IN-UNTlL structure is

executed, the wcrd OBRANCB canpiled by tmlL at the em will test the

flag on stack at that instant. If the flag is false, OBPANCB will branch

back to the wcrd following amm . '!he wcrds between BEI;IN ana

UNITL will be repaaterlly executerl until the flag is true at UNTlL at

this instant, the interpreter will atort thise loop am continte executing

the wcrds folla.ring tlm'IL •

: AGAIN canpile tine addr n -

141

1 ?PAIRS

Similar to but compile BRANCH instead of

OBRANCH in the dictionacy to construct an infmite loop.

Execution cannot lecue this loop unless the words R> DRCP

are executed in a word insid! this loop.

Err or che:: king.

<XMPILE BRANOI Conpile BPJ\NCH and an offset to BEGIN •

.
I

IMMEDIATE

The construct BffiiN-WHILE-REPEAT uses WHILE to aoort a loop in the

middle of the locp. VBILE will test the flag left on stack at that point.

If the flag is true, WHILE contint.:es the exe:ution of following wcrds

until REPEAT , which then branches unoonlitionally back to BEGIN •

If the flag is false, WHILE causes exe:ution to skip the words up to

REPEAT , thus exiting the loop structure.

: WHn.E

(CCMPILEl IF

2+

IMMEDIATE

Canpile tine addrl nl --- addrl nl addr2 n2

canpil e OBPANCH and a dtmlllf offset for REPEAT to r esal w •

addrl and nl as left by BEGIN are also p!Ssed on to

be processed by REPEAT •

call IF to compile OBPANCH and the offset.

Le.ve 4 as n2 to be che::ked by REPEAT •

142

]

I
I

j

1

J

J

: REPEAT canpll e time addrl nl addt2 n2 ---

canpll e BPANCli to jump back to BEX;lN •

the branching offset rSiUira:l by WHILE •

>R >R Get addr2 and n2 out of the way.

Resolve also

[m1PILE] AGAIN Let 1!GAlN eX> the dirty work of cxmpilmg unoorrli-

tioml branch back to BEGIN •

R> R> Restore adc%2 and n2 •

[m1PILE] ENDIF Use mD!F to resal ve the fotward branc::hmg neEDed

.
I

IMI-EDIATE

by WHILE •

1be IF-El.SE-ENDIF and the BEX;lN-UNTlL t~s of oonstru<Xs sinply

redirect the execution sequence ins:i.cE of a oolon def mi.tion. As discussed

previously, the def.initons of these cxmpiler dire::tives are quite short arrl

simple, involving only branching ariJ corrlitional branching. The oo-LOCP t~

of oonstruct is mre a:rnplica. tEd because additional mechanisms other· than

branching are reeded to keep tra:k of the loop limits an::1 loop oounts. The

runtime fll'lctions of DO are to take the lCMer and upt:er loop limits

off the data sta:k, p1sh than on the return sta:k, and setup the address for

LOCP to jump back. IDCP at runtiJTe will then inc:r anent the loop count

on top of the return s~k ariJ cantare its val1.2 to that of the loop limit

just U'lder it on the return sta:k. If the loop count equals or eJCCeErls the

loq> limit, the loop is canplete:J an::1 execution goes to the next word after

143

LCOP • Otherwise, !lXP will branch back to 00 and continue the looping.

+UXP behaves similarl.y to IDCP e>eept that it incr anent the loop count

by a number supplied on the data stack.

The wards 00 , IDCP

runtine routines to d::> the work.

routines will be discussed also.

and +IDOP call on their rest:ective

The detailed codes in these runtine

oo-LQ(]?s are set up in a oolon definition in the following forns:

or

00

00

I

I

IDCP

+IDCP

At runtime, 00 begins a sequenc:2 of repetitive exe:::lti.ons controlled by

a loq> count and a loop limit. The starting val te of the loop oount and the

locp limit are taken off the data stack at run tiJTe. Up:>n rea::hmg the word

LOCP , the loq> count is incr enenta:J by one. Until the new loop count equals

or eJCCeeds the loop limit, exect%ion loops back to the word just after 00 •

Otherwise, the two locp p:t.rameters are raooveq fran the return stack and the

execution oontinues ahead at the word after I.OCP • Within a loop, the word

I will OOP.f the loop oount to data stack to be used in canpt%ations.

00

CCMPILE (00)

Rllltime

Conpil e time

nl n2

adck n

Canpile the runtiJTe routine address of (00) into dictionary.

144

1

J

J

I
1

] HERE

3

• I

AdJress addr for backward branching fran I.DCP or +I.DCF •

Number for error che::king •

IMK:DIATE

CODE

roDE

(00) nl n2 -

MJ\7 2 (S) ,- (RP) Plsh the loop limit nl en return stack.

MJ\7 (S) ,-(RP) Push the initial loop a>unt n2 Cl1 return stack

ADD t4,S

I

abcwe nl. •

Adjust the stack pointer to drop nl. and n2 off the

data stack.

Return.

- n

MJV (RP) ,-(S) CCP.f the loop a>unt on return stack and puS-l

it to data stack.

LEAVE Make the loop limit equal to the loop a>unt am force the

loq> to teminate at I.DCP or +LOCP .-

MJV (RP) ,2 (RP) CCP.f loop a>unt to loop limit on the return

stack.

145

: LCXJP addr n -. .
3 ?PAIRS Check the n~r left by DO • If it is not 3, iss~.e an

error message. The loop is not propady nesta:i.

<:n1PI.m (UXP) Canpile (I.OC!?) at runtine when LCXP is executa:i.

.
I

Canpute am canpile the backward branch offset •

IMMEDIATE

CODE (IOOP) Rmtime routine of IDCP •

me (RP) Increment the loop cx>Unt on return stcck.

on? (RP) ,2 (RP) Canp:lre loop count with the loop limit.

B;2E LCXPl Jump to LO<Pl if the loop count is equal or greater

than the locp limit.

ADO (IP) ,IP Adl backward branch offset to IP and

NEXT branch back to repeat the IXriDCP.

!.COPl: ADO #4,RP Exit the loop. Discard the loop p!raneters off the

return stack.

ADO #2,IP Advance IP over the in-line offset n~r am
NEXT contin~.e executing the next word after LOCP •

When the locp count must be incranenta:i by an ancunt other than

one, +I.DOP should be used to close a IXriOOP • It is used in the form:

DO I +I.OCP

146

I
I
l

I
I

1

1

1

J

: +LOCP Rmtime

canpil e tine

nl

addr nl

Incranent the loop index by nl Cl'l the sta: k and test for

loq> CX>mpletion. Branch back to 00 if not yet d:>ne.

3 ?PAIRS Check n. If it is not 3 as left by 00 , isst:e an error

message.

a:MPILE (+UXJ?) Canpile the address of (+IDCP) at runtine when

the colon definition is being built.

Canpile back branch offset.

1

IM!>EDIATE

CXIDE (+UXJ?)

ADD (S) , (RP)

'1ST (S) +

BLT LCXP3

2 (RP), (RP)

BLE LOOP2

n-

Ac:Xi n to the loop count on return sta:: k.

Test arrl pop data stack

If n is negative, jump to IDCP3 for st:ecial tr~ss

ings.

n is positive. Carq;:are loop CX>unt with loop

limit.

If the loop is d:>ne, jump to IDCP2 to exit.

ADD {IP) ,IP Net: yet d:>ne, return to 00 •

NEXT

I£)0P2: ADD t4 ,RP Clear return stack.

ADD t2,IP Advance IP to the next word after +UXP •

NEXT

147

I.DJP3: Cl1P (RP) ,2 (RP) Negative increnent n • Reverse compirison.

BLE LOCB?2

ADD (IP) ,IP NcX yet d:me with the loop. Return to the word after

oo.

148

I
1

J

OWTER XIII

EDI'IDR

In a FORI'H computer, new definitions are entererl or o:::mpiled into

the dictionary in a cxmpiled form. The source text is not saved. Althol.X]h

there are many different ways to re::over text information fran the cxmpiled

definitions, to • de-axupil e' a definition is not the best way to write

and edit FURrH definitions. As we hale discussed in Chapter 10 on virtual

memory, FCIR!'H uses the disc stora;e to store source text which can be

compiled very easily using the wcrd LOAD • To enter source text

into the disc memory ani to Jrodify then r~ata:Uy d.lr ing prcgran deJelo~

ment and testing, a text editor is indistensble. As in any other larquage

processor, the editor is the ~inci.pal interface between a prcgrarmrer arX3

the c:c:mputer. A gocrl editor makes the ~;rogramm:ing tasks easier, and in sane

rare cases enjoyable.

As of now, fig-FORI'H has yet to hale a staroardized text editor.

In the fig-FCIRI'H model, bJwever, there was incluc2d a sanple text editor by

Bill Ragsdale. I will discuss this ~rticular editor in this Chapter.

A text editor pro.rides i.Irq;x:>rtant and extensive eX51'1ples in using FOR'JH

language to handle texts and strings. It is wortiwhile for a serious stu&nt

of the FOR!'H lan;uage to go through these exanples carefully, to leam

149

techniques in string manipulations.

To facilitate text editing, texts on disc are organized in blcx:ks

of 1024 bytes (a unit of screen). Each screen is divi.c2d into 16 lines

of 64 characters each. A screenful of text thus arrarged fits canfortably

on the scree1 of an ordinary ~T term.inal., hellC2 the name 'screen' • The

text on a screen is roost conveniently acCEssed by lines. A string within

a line can be searchEd a.n:l its location indica tEd by a screen cursor for

editing actions, like· inserting or deleting chara:tetS. A text editor

generally };:erfarms two quite distinguishcble tasks- line editing a.n:l string

editing. In this fig-FORl'H sa.Irple editor, wcrds are def .in Ed setarately

for these two tasks.

In the text editcc, a screenful of text is maintained in the disc

t:uffers, or the screen t:uffer. The screen nunber which denotes the I%¥si.cal

location of this screen of text on disc is storEd in a user varict>le

srn . The rursor lcx:ation in this screen buffer is starEd in another

user variable Rl • Text to be put into the screen buffer or deletEd

fran the screen blffer is temporarily storEd in the text buffer area

~in ted to by the wcrd PAD , which returns the menory address 68 bytes

above the dictionary pointer DP • PAD is used as a 'scratch ptd'

during editing processes, rolding text for the screen buffer or strings

to be matched with the text in the screen buffer.

Most of the editor def Uti. tions hare single chara:::ter names to ease

150

l

I
j

J

J

the typing task during edit.ing. Sane of these simple names clash with the

names of other definitions def.ined in a FOR'lB vocabulaty. It is thls adva~

tagews to group all the editing definitions into a &ep:irate vocabulary

called EDI'IUR • 'n1e EDI'IDR vccabulary is def .ined as:

VCCABUI..PRY EDI'IUR IMMEDIATE

'lhls t:nrase creates the EDI'roR va:abulary which is linked to the truri<

FORl'H vcx:aJ::ulary. EDITOR when called will set the EDI 'roR vcx:abula IY

to the cx:N'l'EX1' vcx:abula ry , so that the de£ mi. tio ns def .in ed in EDI '!DR

will be readily accessible in editing screens of text. The tbrase

EDI'IDR DEFINITIONS

makes the EDI'lt'IR vcx:abulary also the ClRRENl' vcx:abulary. In this way

new definitions will be adced to the EDI'roR instece of being treated as

regular definitions in the FOR'm vocabulary.

~o basic utility wcrds are used by the editor to t:erform the l.ine

editing flrlctions. TE>cr' moves a lme af text fran the inp.lt stream to

the text blffer area of mD • The word LINE canputes the line

address in the screen buffer. Text lines of 64 chara:ters can then be

transferred fran PAD to screen buffer or vice versa. We shall fitst

present these two words before getting into the line editing canmands.

151

TEXT c-

Move a text string deli.mite:i by c.."lara:ter c fran the

dictionary buffer (wcrd blffer) into PAD , blank-

filling the renainder of PAD to 64 chara:ters.

HERE Tq> of dictionary, beginning of wcrd buffer. The text

interpre~r puts the text string here.

C/L l+ BLANKS Fill word buffer with 65 blanks.

WORD Move the text, delimita:i by chara:ter c, fran the input

strean to the word buffer.

PAD Ad:lress of the text buffer.

C/L l+ 010VE Move the text, 64 bytes of text aoo l lergth byte, to PAD •

;

: LINE n - addr

Leave address of the beginning of line n in the screen buf

ruf. The screen rumber is in Sffi. Read the disc blcx:k fran

disc if it is not already in the disc buffers.

tuP FFFOH AND Make sure n is bet:loleen 0 and l5.

17 ?ERRCR If not, isstE an error message.

s~ @ Get the screen ni.IIIber fran ~ •

(LINE) Red the screen into screen buffer which is ccmposed of the

disc blffers. · Canpute the address of the n-th line in the

screm b.lffer a.n:3 push it on sta::k.

DRCP

. ,

Discard the chara:ter count left on sta::k by (LmE) •

Only the line address is left on stack now •

152

)

J

1

J

: -~ a&% n --

LINE

C/L OOVE

. ,

: B

LINE

PAD 1+

Copy a line of text fran adc% to rrth line in the cur rent

screen blffer.

Get the line address in saeen buffer.

Move 64 characters fran addr to line n in sa een buffer.

Nocify the disc harxiler ·this buffer has been nodifie:I. It

will be written back to disc to updi te the disc storage •

n --

cCv.i rrth line to PAD • Hold the text there ready to be

typed out.

Get the line address.

Starting address of text in PAD •

C/L IlJP PAD C! Put 64 in the len;th byte of PAD •

. ,

: s

IX1P 1-

om

Move one line •

n --

Spread n-th line with blanks. Down shift the original n-th

and subsequent lines by one line. ~ last line in the

screen is lost.

Lallier limit of lines to be m:wed.

14, the last line to be shifte:I d::>wn.

153

00

I LINE

I 1+

-MJVE

-1 +LOOP

E

: D

IXJPH

OFB

IXJP Ror

00

E

. ,

I 1+ LINE

I -MJVE

E

LINE

Get I -th line address

Next line

Downshift one line.

Decranent loop count and repeat till oone.
Erase the n-th line.

n-

Delete the n-th line. Move sut:sequent lines up one line.

The delete line is held in :mo in case it is ~till nee:Jed.

Cc;py the n-th line to :mo •

'!be last Une.

Get n to top of sta=k.

Next line to be IOOVed.

UJ;Shift by one line.

Erase the last line.

n-

Erase the n-th line in the sa-een buffer by fillmg with

64 blanks.

Line address.

154

J

j

J

1

J

J

1

J

I
l
1

C/L BI..ANRS

UPDATE

• ,

: R

PAD l+

: p

1 TEXT

R

• ,

: I

IlJP s

R

. ,

Fill with blanks.

n-

Replace the n-th line with text storEd in mo •

Starting address of the text in mo •

Move text fran mD to n-th line.

n-

Put following text on line n. Write c::wer its cx>ntents.

Aa::ept the following text of C/L chara:tets or till ~ to

mD.

Put the text into line n.

n-

Insert text from PAD to n-th line. Shift the original

n-th and subsequent lines d:>wn by one line. The last line

in the screen is lost.

Spread line n and pid with blanks.

Move PAD into line n.

155

Sffi !

l OB 0 00

FCRI'H I

EDI'IDR E

LOOP

.
I

: COPY

B/ Sffi *

OFFSET @ +

SdKP B/ Sffi *
B/ Sffi OVER +

g,qp;p 00

n-

Clear the n-th screen by tadding with blanks.

Store saeen nunber n into srn •

Erase 16 lines

Get the loop oount fran return sta:k. I was redef .ine:i by

the editor to insert line into a screen. To call the I

which gets the loop oount, FOR'lH must be called to make

the trunk FORl'H vocabulacy the CCNTEXT vcx:abulacy, which

is searched first to get the_ oorra:t I. This demonstrates

the use of vocabularies.

Set the CDNI'EXT vcx::abulacy back to EDITOR vcx::abulary

to oontinue editing texts. E will erase the I-th line.

nl n2 -

Copy screm nl in drive 0 to screen n2 in drive 1. This is

acoomplished by reacti.n3 blcx::::ks in sa een nl to disc buffei:S

and chalging blcx::::k nllnbets to those asscx:iated with screen

n2 . The disc tuffets are then flushed back to disc.

First blcx::::k in screen n2.

Add blcck offset for drive 1.

First blcck in saeen nl.

Last bla: k nunber + 1.

Go throl}.3h all blcx::::ks in saeen nl.

156

1

J

I
] IXJP

FtRrB I

~

2 - 1

eq,y blcx:k number in screen n2.

CUrrmt bla:k n\Jnber in saeen nl. as the loop cx:>unt.

REed the bla:k fran saeen nl. to disc buffer.

Store the bla:k mmber in saeen n2 into the first cell of

the disc blffer, which contams the disc bla:k nllnber. This

tricks the systsn to think the blcc:k is in the screen

n2.

T

Set upeate bit in disc buffer to be flwilErl back to disc.

Discard the blcc:k nllnber on stack.

Write all disc buffers contaming data fran screen nl back

to screen n2, because the blcc:k nllnbers were switchErl.

The above wards belong to what might be called a line editor, which

handles the text by whole lines. The l.ine editor is convenient in inp!Lting

lines of texts. BowerJer, if sane mistakes are discoverErl or only a few

characters in a line nee:3 to be chan;ed, the line editor is not suita:Jle

because one wruld have to retyt:e the whole line. Ba- e, a string editor is

more effective. The str.ing editor uses a varici::lle Ri as a cursor painting

to a character in a string which can be accessed by the string editor most

easily. The str.ing editor must be able to search a l.ine or the entire

screen far a stECifiErl str.ing and paint the cursor to this string. It must

have means to delete and mcdify chara=ters neighboring the cursor.

157

A colon definition ~'101 ~s used to search a range of text for a st:ecified

string and move the cursor accordingly. MA'lal and a few utility words are

used here to b.lild up the words dira:tly invol ~ in the string editor.

>R >R 2IXJP

R> R> 2SIV~

OVER+ Sil~

00

2IXJP

FORI'H I

-'!EXT

IF

>R 2DROP R>

-I sw~-

0 Sil~

OOLEAVE

addrl nl addr2 n2 --- f n3

The text to be searche:i begins at addrl and is nl bytes

long. The string to be mab:hed begins at addr2 and is n2

bytes long. The boolean flag is true if a match is foum.

n3 is then the cursor advanaament to the em of the found

string. If no mab:h is foun:i, f will be false am n3 be 0.

Dtplicate addrl and nl.

Move the copi.e:i addrl and nl to the top of the stack.

NCM the stack locks like:

(addrl nl adda n2 addrl +nl addrl --)

Scan the whole source text.

Duplicate addr2 and n2.

The loop index paints to source text.

Is the source text here the same as the string at ad(l[2 ?

Yes, the string is found in the text.

Discard nl and addr2 m the stack.

Offset to the em of the found string.

Put a boolean undemeath.

Put two dt.miiiV zeros on the stack am prep3re to leave the

locp.

158

J

I
l

I
l
l

)

J

J

LOOP

2DRCP

SVAP 0= SlitAP

• ,

: -'lEXT

911\P -IXJP IF

OJER + 9J1\P

00

IlJP C@

No match this time. Loop back.

Discard garbage on the stack.

Correct the boolean flag upon exit.

addJ:l n addr2 - f

If the strings at addrl and addr2 match to n chara=tets,

return a true flag. Ot:heiWise, return a false flag.

If nl. is zero, byp:lss the tests.

(addrl addr2+nl addr2 -)

Scan the string at addr2 •

Fetch a char~er fran the fitst string.

FORI'H I C@ - equal to the ex>rrespoming chara=ter in the secom str:ing?

IF 0• LEAVE Noc the sane. LEBVe the loop.

ELSE 1 + 'l'l3m Ccrltin m on.

I.OOP

ELSE DROP 0-=

. ,

n is zero • LEave a false flag. Neithez:: address may be zero.

The 32-bit double number instructions used in ~'ICE and -'IEXT should

be defined in the FOR'lH trul'X vcx:abulary as follawing:

: 2DRCP Discard two mnbers fran the stack.

DROP DROP ;

159

: 2IXJp

: 2s-1PiP

ROI' >R

ROl' R>

. ,

: 'roP

0 Rt

;

Rl @

C/L / MJD

. ,

#LEAD

Dtplicate a double number.

Bring the secorxi d::luble nun.ber to the top of the stcck.

SiNe top half of the secom nl.IIIber.

Move botton half arxi restore top half.

Move the cursor to hane, top left of the screen.

Stcre 0 in Rt , the cursor painter.

- · nl n2

From the cursor pointer Rt canpute the line nl.IIIber n2 and

the character offset nl in line nl.IIIber n2.

Get the cursor location.

Divide cursor location by C/L. Line nunber is the qootient

and the offset is the ranainder.

,

- addr n

From Rt com};:Ute the line address addr in the screen buffer

and the offset fran addr to the cursor loc:a tion n.

160

I
J

1

j

I
1

LINE

.
I

: ·~

I LEAD

IOP >R

+

C/L R>-

.
I

M

Rt +!

CRSPACE

tLEAD TYPE

SFB EMIT

·~ 'lYPE

Get off 9:! t and line J'lll'l'lber.

From line mJnber a:mpute the line address in screen b.lffe r.

- addr n

From Rt compute the line adcress adcr in the screen buffer

and the off!E!t fran cursor loca ti.on to the em of line.

Get the line address am the offset to cursor.

Save the offset.

'nle address of the cursor in screen buffer.

The offset fran cursor to em of line •

n-

Move cursor ~ n charactets .

the OJrsor fer editing.

Move cursor ~ upch ting Rt •

Start a new printing line.

Print the line containing

Typ: the text pr ece Erling the cursor •

Pri nt a caret ('') sign at the cursor lcx:a ti.on.

Print the text after the cursor.

iux::ATE • DRCF 'l'yJ:e the line nunber at the em of text.

.
I

161

T

IXJP C/L *
Rt

H

0 M

i

: L

SCR @ LIST

0 M

. ,

lLINE

#LPG PAD carnr

Rt +1

.
I

n-

'tYPe the n-th line in the current screen. Salle the text also

in PAD •

Character offset of n-th line in the screen.

Point the cursor to the beginning of n-th line.

Move n-th line to PAD •

Print the n-th line on outpU: device.

~list the screen under editing.

List the cur rent screen.

Print the line cont.a.ming_ the cursor.

- f

scan a line of text beginning at the cursor location for

a string matchi..rg with one store3 in mo. Return true flag

if a matching string is found with cursor rooved to the em

of the famd string. Return a false flag if no match.

Prepare addresses and chara::ter counts to the

requirements of ~'l'CH •

Go rna tx::hing.

Move the cursor to the em of the matching string.

162

I
1

)

j

j

I
1

l
I
I
I

: FlND

BEXilN

3FFB Rt @ <

IF

Search the entire s:reen fcc a string storEd in 5\D •

If not famd, issue an error message. If fowx3, m::rve cursor

to the end of the found string.

Is the cursor lcx:a tion > 1023?

Yes, outside the screen.

IDP Bane the cursor.

PAD HERE C/L l+ OIJVE Move the string searchEd for to HERE

0 ERRCR

ENDIF

lLlNE

UN!'IL

. ,

: DELETE

>R

tr.AG +

FORl'H R

I LAG

to be typed out as put of an error message.

Issue an error message.

Scan one line for a match.

n-

Delete n characters in front of the cursor.

from the end of line to fill up the sptce.

the end of line.

Sa\.Te the chara::ter ex>unt.

ErD of line.

Sa\.Te blank fill location.

R MINUS R# +! Back up cursor by n chara::teiS.

#LEAD + New cursor location.

163

Move the text

Blank fill at

I

;

: N

FIND

0 M

.
I

: F

N

. ,

: B

PAD C@

MINUS M

;

: X

1 TEXT

FIND

PAD C@

Move the rest of line forward to fill up the delete str:ing.

Blank fill to the em.

Find the next occur ence of the text already in HID •

Matching.

If found, type rut the whole l.ine in which the str:ing was

famd with the cursor ~op!.dy displayed •

Fim the fitst occurence of the following text string.

Put the following text str.ing into HID •

Fioo the str:ing and typ! out the l:ine.

Back the cursor to the beginning of the str.ing just matched.

Get the len;th byte of the text string in mo •

Back up the cursor arxl tYJ;e out the whole l:ine.

Delete the following text fran the cur rent l.ine.

Put the text in mo •

Go find the string.

Get the lergth byte of the str.ing.

164

J

1

1

1

I
I
I

DELETE

0 M

:TILL

ILEAD +

1 TEXT

lLINE

Delete that many characters.

~ the JOOdif is:! line.

Delete all char act em fran OJrsor loc:a tion to the errl of

the follcwing text string.

The current cur·sor address.

Put the following text in mD •

Scan the line for a match.

0= 0 ?ERROR No matx::h. Iss I.E An error message.

ILEAD + SlllAP - '!be mmb:!r of charcctets to be deletEd •
.

IELE'IE Delete that mny charcctets and nove the rest of line to

fill up the stace left .

0 M ~ out the new line.

: c Stread the text at cursor to insert the following string .

Character p.lShs:! off the errl of line are lost.

1 TEXT PAD caJNl' Aa:ept text string and IOOVe to PAD •

IL.AG ROI' CNm MIN >R Save the smaller of the charccter oount in PAD and

FORI'H R

R# +!

the rumber of charcctets after the cursor.

Get the smaller count

Move the cursor by that many bytes

165

R- >R Number of characters to be saved.

Il.JP HERE R OfJVE Move the old text fran aursor on to HERE for

tE!li{X)r ary storage.

HERE #LE'AD + R> OCVE Move the same text back. Put at new location to

uroATE

0 M

.
I

the right, leaving spice to insert a string fran HID •

Move the new string in place.

Show the new line.

166

I
1

j

I
J

l

I
1

J

I
J

CBAP.I'ER XIV

An assembler which translates assenbly manoni.cs into machine codes

is equivalent to a a:mpiler in a:mplexity if not nore a:mplica te:J. Ore might

expect the assanbler to be sinpler because it is at a lower level af

cxmstruct. However, the large n\.l'llber of maooni.c names with many different

modes of addressing make the assanbl.ing task mudl xoore difficult. In the

FORI'B l~g.1age system the assenbling processes cannot be aca::mpli.shed by

the text interpreter alone. All the resources in the FOR'lB systan are

needed. For this reason the assenbler in FOR'lH is often def med as an

independent va:ab.llary, &'ld the assenbling process is cxmtrolled by the

address interpreter, in the sense that all assenbly nnemonics used by the

assembler are not just names representing the machine cx:x:les blt they are

actually FORrH definitions executEd l:!f the address intetpr eter. These

definitions when executEd will cause msclline cxXIes to be assanbl.Ed to the

dictionary as literals. The data sta:k am the return sta:k are often

used to construct pro:t:er codes am to resolve brandlmg addresses.

Before discussing codes in the FOR'lH assenblers, I would like to

present assemblers in three levels of a:mplexity:

Level 0: The prcgrmrarer locks up the machine codes and assanbles

167

Level 1:

Level 2:

t.~em to the dictionary;

The a::mputer translates the assanbl.y rmernonics to cx:xjes with

a lookup-table, b.Jt the {ra;rarmer must fill in addresses

and literals when needed; and

The CXlTiputer cbes all the work, with rnnernonics am OJ;:erarrls

supplied by the pra;rararer.

The Level 0 assembler in FOR'lH uses only three def mi. tions alr ecrly

defined in the FORl'B Canpi le r:

CREATE Gmerate the header for a new aXle definition,

Assemble a 16 bit literal into the dictionary, and

C, Assemble a byte literal into the dic:tionaz:y, usa:i in byte

oriented processors.

These definitions were desc.:ril::ed as the JOOSt primitive CXlTipiler in Chapter

9. They might just as well be the JOOst t;:r imi.ti ve assanbl.er if the new

definition were a code definition. The prog·rcmmer wruld write cbwn the

machine codes first with the help of those snal.l code cards supplied often

freely by CPU vendors. The machme codes are entered on the top of the data

stack and then assanbl.ed to the tarameter field of the new definition on top

of the dictionary.

The Level 1 assembler would use the def ini.ng weed CCNS'l'FNT to

define assembly rnnernonics relating then to their resp:cti~ machme codes.

168

1

1

1

J

J

'n1e text inter~eter when confronted with a mnemonic name wCllld push the

correspmdi.ng nachine code on the stack. The code will then be assenbled

to the dictionary by the words , cr C, • An exq>le is:

o ~srmr BALT

which defines BALT as a constant of 0. During assembly, the P'lr~e

• • • BALT , • • •

wculd assemble a HALT instruction into the dictiona.cy. To make it eEi er

fer himself, the p:cgrmmer might want a new def w tion:

: HALT, HALT , 1

Executing HALT, wCllld then assemble the HALT instruction to the dic:tionary.

Historically all assembler def wtions em their names with a canma

far the reason just described, il'ldica ti.ng that the def mtion caJses an

instruction to be assembled to the dictionacy. This .co mention serves very

well to distinguish assembler definitions fran regular FORlB def .ini tions.

'!his scheme in Level l is quite adequate if there were a one to one

mapping fran mnemonics to machine codes. B~er, in cases where many cxx:ie s

share the same mnenonic arXl differ only in op:!ran:3s or ~dressing mode, the

169

..

basic code must be augmented to accormnodate operands or address fields. It

is not difficult to IOOdify definitions as HALT, to make the ne:essu:y

changes in the code, · which has to ptSS the data stack aJ'lYWlY. To def :ine

each assembly mnemonic individtBl.ly is messy and inelegant. A mud'l mre

apt:ealin; method is to use the <BJILDS-OOES> construct in the FORm lan;uage

to define whole classes of nnemonics with the same characteristics, which

brings us to the Level 2 assembler.

In the last exanpl.e of the HALT instiUc:tion, insteai of using

<XNsr.ANl' to relate the mnemonic name with the code, a def :ining wcrd is

created as:

OP <EUILDS ' OOES> @ , • ,

The instruction HALT, is then def .inei [¥ the def :ining w<rd OP as:

0 OP HALT, 1 OP WAIT, 5 OP RESEr, • • •

Now, when HALT, is later fC oce ssed [¥ the text in tez:pr eter, the code 0

is autanatically assembled into the dic:tiona.ty by the run-time routine

@ , •

The <EIJ:rr..x:&OOFS> construct can be appliei to all other tn:es of

assembly mnemonics to assenble different classes of instm¢ions, pro..r iding

some of the finest exanples for the extensibility in the FORIB lan;uage.

170

I
j

j

1

J

l
J

No other language can I;DSsibly offer such a I;Dwetful tool to its progranmers.

A syntactic probl.en in using the FOR'lH asse:nbl.er is that before the

mnemonics can be execute:J to assemble a machine oode, all the addressing

information and operams must be {rOJided on the data stack. There:ore,

operands must preceed the instruction mnaroni.cs, resulting in the postfix

notation. The source listing of a FOR'lH oode definition is therfiore very

differE!lt fran the amventional assenbl.y source listing, where the operan:ls

follCM the assembly nneooni.c. Using the data stack an3 the post:f ix notation

greatly facilitates the assenbl.ing trooess in the FOR'lH assenbl.er. This is

a very srrell price to taY for the catability to acc:2ss the host a>u and to

make the fullest use of the resources in a c:anputer system.

'1\lo assemblers will be discussed in this Chapter in an effort to

a:wer the widest ran;e of microtrooessors. Ore is for the Iri:el. 8080A

which is a cyte orienterl ma:hine with a rather {rimitive instruction set.

en the other E!ld is the iDP-ll instiuction set, which is extensi. vely

microcoded in a 16 bit wic:E ax3e field. I feel that these two exanples

should be sufficient to illustrate how FOR'lH assenbl.ers for mst ot."ler

microprocessors are oonstructe:J.

171

PDP-11 ASSEMBLER

The IDP-11 instruction set is typical of that fer rninioomputers.

With a 16 bit instruction field, much rore flexible and versa ti.le addressing

schemes are p:>ssi.ble than those used in the 8 bit inst.Iuctions of mst

cormnon microprocessors. In addition, PDP-11 is a stack orientEd machine

i n which all registers can be used as stack pointers in addition to normal

acOlmulatcr Cl'ld addressing fll'lctions. There are 8 registers in the PDP-ll

CPU : registers 0 to 5 are general purpose re;isters, register 6 is a

dedicated stack pointer, and re;ister 7 is the pt03ran counter. Registez:S

can be used in many different addressing rrodes, making it very ccmeni.ent to

host a FOR'l'H virtual machine in the PDP-11 compl:i:er.

The follcwi.ng comrand sequence must be given first to initiate the

ASSEMBLER vcx:ab.llary and to prepue the FOR'm systen to build the asSEmbler.

mP-11 instructions are best presentEd in octal base because

address fields are 6 bits wid!.

0 WiRIABLE OLI:BASE

To ease switching base to and fran octal, the currently usa:i

base will be storEd CMay in CLIBASE, to be restorEd when the

assembly process i s canpleta:i.

Vcx:ABULPRY ASSEMBLER IMMEDIATE

172

l
J

I
I
j

I

Create the assembler vcx:atulary to house all the assanbly

mnemonics and other nece ssa cy definitions.

: ENI'ERCDDE Invoke ASSEM3LER vocabulary to start the assanbly process.

[,cntPILE] ASSElo!Btm

Set ~ to ASSa.mLER to search for the maroni.cs.

BASE @ OLI:BASE ! OCL'AL

SP@

.
I

: CDDE

ClUME

ENTERCDDE

• I

SWi. tch base to octal. • SCPJe old base to be rest or a:3 after

assembly.

PI.Eh stack painter on sta:k for error che::king at end.

A more ref mErl· def Wng wcrd to start a cxx1e definition.

Create a header with the nane following ODE •

Invoke ASSEM3LER •

ASSEMBLER DEFINITIONS

Set both CX:Nl'EXT and CtlRRENI' vocabularies to ASSEM&.ER •

New definitions hereafter will be placed in the assanbler

vocatulary.

Before discussing the assembler definitions, the O?U registers and

their addressing modes should be clarifierl. An address field uses 6 bits in

an instruction. The lower 3 bits s~ify a register to be referen~d for

173

addressing, and the upper 3 bits st:ecify the addressing mode. The register

and the addressing ItiCXJe are canbined to form an address field which is used

to specify either a source ot:erand or a destination O{:erand in the assanbl.y

instruction as required. RegisteJ:S am roodes are defined as follows:

IS CCNsrANT ; soort hand for OONSI'JNT •

OISRO liSRl 2ISR2 3ISR3 4ISR4 SISRS 6ISSP

7ISPC 2ISW 3 IS 0 4 IS IP 5 IS S 6 IS RP

RTST r IOOde - addr-field -1

Test register r for r an;e between 0 and 7. Ad:i r and roode

to farm address field addr-field • Also leare a flag -1 oo

stack to indicate that an adaess field is uroemeath.

Get r to top for tests.

IXJP 7 > Larger than 7 ?

sv~ 0 < Snaller than 0 ?

OR IF In either case, isSU! an error message,

+

-1

;

• • Nor A REGISTER: •

OVER • ENDIF with the affen:Ung nunber ap};:erxled.

addr-field • r + mode

The flag.

The addressing modes are defined as executable definitions using

174

J

l
I
j

J

J

J

names similar to the cperand notation used in IDP assembly language with

some twists. The stack effects are: r - addr-fiel.d , -1 •

:)+ 20 RrST 1 Post-incrsnent re;ister JOOde.

. -) 40 RTST ; Pre-deer anent re;ister JOOde. .
I) 60 RI'ST . Indexed r e; ister JOOde • I

. @)+ 30 RTST ; Deferred post-incrsnent JOOde. .

. @-) so Rl'ST ; Deferred pr&-decrsnent mode. .

. @I) 70 RTST ; Deferred in'dex mode. .

'!he addressing mode using the program counter is sanewhat different

fran the modes using other general purpose re;isters.

: t Tl -1 ;

: @# 37 -1 ;

: 0

IlJP 10 U<

IF 10 + -1

Imnediate addressing mode.

Al:solute addressing mode.

r - addr-fiel.d -1 far re;ister deferra:l nx::>Oe.

n --- n 77 -1 far relative deferre:3 nxx1e.

Tcp of stack is between 0 and 7, a re;ister.

Make the address field.

ELSE 77 -1 ENDIF Otherwise, top of sta:k is an address offset. f-'~ke

.
I

it the relative deferred JOOde.

The simplest instruction requires no ot:eran;l.

175

These instru c::tions

can be defined by a simple defining wcrd:

: OP

<BUIIm

,

IX>EB>

@ ,

.
I

A defining wcrd to def :ine instructions witoout O{:eran:ls.

Create an header for a mnaoonic def :inition with the nnanoni.c

name following OP •

Canpile the instruction code on the sta:k to the ~raneter

field in the rew def :ini tion.

wren the defined mnaoonic def :ini tion is executed dur :ing

assembly, execute the following wcrds:

Fetch the instruction code store::l in ~raneter field arx:i

assemble it to the code def :ini tion under construction on

tqJ of the dictionary •

0 OP HALT, 1 OP WAIT, 2 OP RTI, 3 OP BPI', 4 OP IOT, 5 OP RESm',

6 OP RTT, 24fi OP CLC, 242 OP CLV, 244 OP ~, 250 OP CLN,

261 OP SEC, 26 2 OP SEV, 264 OP SEZ, 270 OP SEN, 277 OP SCC,

257 OP CCC, 240 OP NCP, 6400 OP MARK,

Instructions with operands are of course more invol ~. Tlx>se with

only ore operand are def .ined by a def :ining wcrd lOP • This wcrd uses

many other utility def :initions. HCMever, we shall fitst p:esent the high

level lOP before getting into the nitty gritty details of the other

low level definitions.

176

J

: lOP A defining ward to define instructions with a1e operand.

<BUII..OO , OOES> The same def in:ing wcrd format.

@ , When the def.ine::I wcrd is execute::I during assenbly, the basic

instruction code is fetch·Erl arrl assanbled to the dictionary.

FIXMJDE Take the m:xle p:lCket on stack to resal ~ the address field.

OOP Copy the address field.

HERE 2 - CJUoODE Insert the address field into the lower 6 bit

,OPERAND

;

: F!XfoODE

OOP -1 =
IF DRCP

ELSE

destination field.

If the instruction neEds a 16 bit valu: either as a literal

or as an address, assenble it after the instruction.

Fix the mode J:8C ke t on the data stack for CIDODE and

,OPERAND to assenble the instruction corra:tly.

addr-field -1 --- addr-field

r --- r

n - n 67

Tcp of sta:: k c -1 ?

Yes, drop -1 and leare addr-field on top.

The top of the stack might be a re:;ister or a literal.

IXJP 10 9/l~ U< If top of sta:: k is larger than 7 , PC relative roode •

IF 67 ENDIF Pl.Eh 67 on top of n , indicating K: rrode.

ENDIF

.
I

Otherwise, leave the re:;ister mrnber on the sta::Jr ..

177

ORIDDE

SWP.P

cvm@

OR

SdP.P

,OPERAND

CUP 67 =

OVER 77 =

ORIF

511~

HERE 2 + -

511~

ENDIF

DUP 27 =

ovm 37 = CR

addr-field addr ---

Take the address field vallE addr-field and insert it into

the lower 6 bit address field in the instruction code at

addr •

Move addr-field to top of the sta:k.

Fetch the instruction code at addr •

Insert address field.

Put the roodifie.J instruction back.

(n) addr-field ---

Assemble a literal to the dictionary to cx::mplete a J;rogram

counter addressing instruction.

FC relati. ve mode ?

Or FC rela ti. ve deferre.J mode?

In either case,

move op:ran:l n to top of the sta:k.

canpute offset fran n to the next instruction address.

PUt the offset VallE uOOer addr-field.

FC imnediate JOOde ?

Or FC at::s al. ut e mode ?

S'dP.P Get adcr-field for another test.

1777 60 ~.ND 60 = CR Or if it is index addressing mode •

178

J

1

1

I
l
l
I
I

IF , ENDIF

.
I

: B

100000

HERE 2 - +!

.
I

In any of the three cases, assemble the literal after the

instruction cx:>de.

Nme of atove. '!be instruction d:>es not need a literal. It

is alrea~ cx:>rnplete.

Modify the instruction code just asssnbled to the dictionary

to make a byte instruction fran a cell instruction.

MSB of the byte instruction must be set.

Toggle the foS3 of the instruction code on top of dictionary.

B is to be used iJTir'lediatel.y after an instruction def mi tion

like q>l ql2 KJV, B to JOOVe a byte fran opl to op2 •

'!be byte instruction can be defined sep:trately as MJVB, •

Bawer.rer, the modifier def mi tion B is more elegant in

redlcing the number of nnaronic def mi tions by 25%.

5100 lOP cr..R, 5200 lOP INC, 5300 lOP IEC, 5400 lOP NEii, 5500 lOP MX.,

5600 lOP SBC, 5700 lOP TST, 6000 lOP RCR, 6100 lOP RCI., 6200 lOP ASR,

6300 lOP ASL, 6700 lOP SXT, 100 lOP JMP,

: ROP A defining word to define two o:t:eran:l instructions. The

source operand can only be a register without trode selection.

'l'tle destination address field is the lower 6 bits, and the

source register is s:t:eeified by bits 6 to 8.

<BUILDS , OOEB> Make hea:ler a.rxJ store instruction code.

@ , wmn defined instruction is executed, asssnble the basic

179

FIXM)DE

HERE 2-

I:UP >R

instruction code t o the dictiomry.

Fix the destination address field.

Ccpy the just canple te:l address field vallE •

Ad::lress of the instmc:tion.

Save a COP.{ of this address on the return stack to fix the

source register field un:lemeath it on the stack.

ORM)DE Insert the destination address field into the instmction.

,OPERAND If a literal oterand is require:l, assanble it here.

WP 7 SN~ U< The register nl.lnber ·must be less than 7 •

IF • " ERR-Rm-B" ENDIF

100 * R> ORMJDE

.
I

The register number is too big, isSl.E an error message.

Justify the source register field vallE am insert

it into the instruction.

74000 ROP XOR, 4000 ROP JSR,

BOP A def ming wcrd used to define brandling and corrlitionaJ.

<BUILDS , OOES >

@ ,

HERE-

branching instructions. This wcrd is inclu&d only for

completeness since the brandlings are not struc:tur e:l. In

FORl'H oode definitions, rrore powerful branching and looping

structures should be used, as will be discussed shortly.

The target address is presummably on data stack. Canpllte

180

J

1

j

the off!:Et value fer branching .

IlJP 376 > If the offset is greater than 37 6, isslE an error message:

IF • " ERR-BR+" • ENDIF with the out of ran;e offset.

IlJP -400 < If the offset is less than -400, isstE an error message:

IF • " ERR-BR-" • ENDIF with the out of ran;e offset.

2 I 377 AND The corra::t offset vallE is then

HERE 2 = C'RIDDE inserte:J into the instruction code •

.
I

400 BCP BR, 1000 BCP BNE, 1400 BCF BEO, 2000 BCF BG:, 2400 BCF BLT,

3000 BOP BGT, 3400 BCP BLE, 100000 BCP BPL, 100400 BCF BMI,

101000 BCP BHI, 101400 BCP BIDS, 102000 BCF BVC, 102400 BCF BVS,

103000 BCP BCC, 103400 BCF BCS, 103400 BCF BI.D, 103000 BCP BHIS,

: 20P

<BUILDS , 005>

@ ,

FI»>DE

IlJP HERE 2 -

IlJP >R

cmDDE

,OPERAND

FI»>DE

Il.JP 100 *
R ORr-ODE

A def :ining wcrd to define two ot:erand instructions.

Fix the roode J:BCket for destination field.

Get the address of the instruction to be fixed.

Save a copy of the instruction address on return stac k.

Insert the destination field.

Assemble a literal after the instructi on if requinrl.

Now process the s ource roode J:BCket.

Justify the source f iel. d vallE.

Insert the source field into the instruction.

181

,OPERAND Assemble ~ literal if required.

HERE R> - 6 = If there are two literals assenbled after the instruction,

they are in the wrong order.

IF 9/lM?OP ENDIF The two literals hare to be swapp:!d.

;

SWAPOP SWap the two literals after a two ot:eran:l instruction. If

either literal is used for R: addressing, the offset vallE

will have to be adjuste:l to reflect the swapting.

HERE 2 - @ Pt.Sh the last literal on the stack.

HERE 6 - @ This is the instruction oode itself.

6700 AND 6700 = Fe relative IOOde?

IF 2 + ENDIF Yes, increment the last literal by 2.

HERE 4 - @ Now work on the first literal.

HERE 6 - @ Get the instruction back aga.in.

67 AND 67 = Is the destination field also of Fe relative IOOde?

I~ 2 - ENDIF If it is, decrement the branching offset by 2.

HERE 2 - Put the fitst offset last,

HERE 4 - . , and the last offset fitst.

10000 20P MDV, 20000 20P CMP, 30000 20P BrT, 40000 20P BIC,

50000 20P BIS, 60000 20P ADD, 160000 20P SUB,

'IWo more instructions need to be ta tche:l:

182

J

J

l

: PST, 200 OR , ;

: EM!', . 104000 + , ;

The branching instructions are similar to the GO'lO statEments in

high le.rel languages. 'nley are not very useful in franoting IOOdular and

structured programning. 'nlerefore, their usage in FOR'lH cxxie definitions

should be discouraged. Sanewhat m:xUfiEd forns of these brand! instructions

are defined in the assenbl.er to CX>de IF-ELSE-ENDIF and BffiiN-tlNTn. ~s

of structures. Alt:ho1.J3h these structures are very similar to the structures

used in colon definitions, the functions of these words in the assnbl.er are

different. Thus it is a gooo pr a::tice to def me than with nanes eming in

corme.s as all other menon:i.c def mi tions. Hc:rwarer, the cxmrna at the eoo

Ooe5 not imply that an instruction CX>de is al\leyS assanbl.Ed by these St:eeial

definitions.

'l11e conditiorel branching instructions are def mEd as constants to

be assembled by the words requirmg brandling. The notation is reversed

fran the PDP mnemonics because af this assanbling procedure.

1000 IS EO 1400 IS NE 2000 IS LT 2400 IS GE 3000 IS LE 3400 IS GT

100000 IS MI 101000 IS LOS 101400 IS HI 102000 IS VS 102400 IS VC

103000 IS LO 103400 IS HIS

: IF, n - addr

Take the literal n on sta:k arrl asssnbl.e it to dictionary

as a conditiorel brand-ling instruction. Leave the adcr ess of

183

.
I

IPA'!CH,

ovm-

this branching instruction on the data stack to resol'VE!

the branching offset later.

Ad:Jress of the branching instruction.

Assemble the branching instruction to the dictionacy •

addrl addr2 -

Use the addresses left on the stack to canpute the fotward

branching offset and t;atch up the instruction assenbl.erl by

IF, •

Byte offset fran addrl to addr2.

2 1 l- 377 AND The 8 bit instruction offset.

StlAP WP @

Rar OR

;

ENDIF,

HERE I PATCH,

ElSE,

Fetch out the branching instruction at addrl •

Insert the offset into the branching instruction.

Put the canpleterl instruction back.

addr-

Close the conditioral structure in a code def .ini tion.

call on IPA'ICH, to resolve the fotward branc::h.ing.

addrl --- addr2

184

J

I
I
J

J

J

J

J

400 ,

HERE IPA'!Oi,

HERE 2-

.
I

: BffiiN,

HERE

.
I

UNriL,

,

HERE 2 -

StlKP IPATCH,

.
I

: REPEAT,

Assemble an \llconditional branch instruction at HERE

and patch up the offset field in the instruction assanbled

by IF, • Leve the address of the current branch instruction

on the stack for ENDIF, to r esal. ve.

Assemble the BR, instruction to the dictionary.

Patch up the corxiitiona.l. brandling instruction at IF, •

Leave address of BR, for ELSE, to t:a t:ch up.

addr -

Begin an indefinite loop. Push IF a1 stack for backward

branching •

addr n -

Assemble the conditional branching instruction n to the

dictionary, taking addr as the address to branch ba:k to.

Assemble n which must be one of the corxiitional. branching

instruction codes.

The address of the a.OOve instruction.

Patch up the offset in the branching instruC:ion.

addrl addr2 -

Used in the farm: BffiiN, ••• WHILE, ••• REPEAT,

185

HERE

400

ROl' IB\TCH,

HERE

!PATCH,

WHILE,

HERE

Sil~

,

i

C;

inside a code definition. Assemble an unoomitional branch

instruction I=Qinting to BEx:;IN,

forward branch offset for WHILE,

at addrl , and resolve the

at addr2 •

Save the IP I=Qinting to the current BR, instruction.

Assemble BR, here.

Patch the BR, instruction to branch back to B&;IN, at

addrl •

This is where the coniitional branch at WHILE, should

branch to on false coniition.

Patch up the con:iitional branch at WHILE, •

n - addr

Assemble a con:iitional junp instruction at HERE • Push the

address of this instruction addr on the stack for REPEAT,

to resolve the for:ward jump address.

Push IP to stack.

Move n to top of sta:: k, and

.assemble it literally as an instruction.

addr -

Ending of a code definition started by ENTERDDE •

CURRENT @ CCN1'EXT ! Restore CDNrOO' vccabulary to CtlRRENr • Thus

186

J

J

J

I
1

CLIBASE@ ~E

SP@ 2+ =
IF SMUI:GE

abandon the ASSEMBLm va:atulary to the current vocabulary

where the new axle defmition was adc2d. The tro;razmer

can now test the new definition.

Restore the old base before assanbling.

Con];Bre the current SP with addr on the stick,

if they are the same, the stick was not disturbed. Restore

the smud;ed header to cx:mplete the new definition.

ELSE • II CODE ERROR, STPCK DEPIE ~ED"

ENDIF

: NEXT,

IP)+ W l'OV,

w @)+ JMP,

. ,

Otherwise, issue an error message.

The address intetpreter returning exe::ution trcx::ess to the

ex>lon de£ ini tion which calls the axle def mi tio n. This

must be the last word in a CX>de definition before C; •

Move the ex>ntents of lP to W. IP is inc:r enente::l by 2.

Jump to exe::ut.e the instiUction sequence p:>inte::l t o by

the ex>ntents of W. W is inc:r anent Ed by 2 , p:>in t:i11g to

the paraneter field of the word to be executed •

FORI'H DEFINITIONS The assanbler vocabulary is now cx:mplete::l. Return

DEX:IMAL

to the FOR'lB trunk vcx:abulary by setting both CCNTEXT

and CURRENT to FOR'lH •

Restore decimal base. The base was chan;ed to octal when

enteri ng the a precess of creating the assenbler.

187

8080 ASSEMBLER

The assembler is usually defined in an irx3epement vocabulary

separated from the truri<: FOR'IH vocabulary and other vocabularies. To

generate the ASSEmLER vocabulary and to make sane modifications in

the FORI'H vocabulary, the following wcrds must be executa1. These words

are cormre.nds to setup the ASSEMBLER vocabulary.

HEX All 8080 codes will be repr esenta1 in hexadecimal base.

VOCABUIJlRY ASSEMBLER Create a new vocabulary for assanbler.

IMMEDIATE Vocab.llary must. be of !MMEDIATE typ:! to be used withm

colon definitions.

1 ASSEMBLER CFA Get the code field address of ASSEMBLER defmition, and

1 ;<DDE OA + ! patch up the code in ;<DIE • This is to replace the word

SKJI:GE with ASSEMELER , so that the codes following

;CODE can be understcx:d in the CDntext of the assanbler.

'nle flllction of SMIJI:GE is deferra1 to the em of the

: CODE

code sequence in C; •

A more fully develo~ def mi tion to start a code def mi tion

with error checking.

If not executing, isstE an error message.

Create a new dictionary hecrler with the following name.

188

J

I
1

1

I

j

I
l

!CSP

1 IMMEDIATE

Canpil e the next MEDIATE wcr d.

Switch the a:NTEXT to ASSEMLER va:a.bulary to search

assembly mnemonics fitst before the cur rent vocabulary.

Store current sta:k pointer in CSP fer later error

checking.

: C1 En:ling of a new oode def :inition. Check for error and restore

the smud;ed header.

CllRRENT @ CXNTEXT ! At the beginni.ng of assenbly, cc:t."l'EXT was switchEd to

?EXEI:

?CSP

; IMMEDIATE

: LABEL

?Em:

0 'VN{I.ABLE

SMOI:GE

ASSEMBLER , to search for the assenbler nnanoni.cs. After the

code definition is canpleted, a::NTEXT must be restorEd to

ClJRRENT vcx:ab.llary to continlE :pr cgran developnent or testing.

If not executing, isslE an error mesege.

If the data sta:k was disb.lrbed, isslE an error mesege.

Define a subroutine which can be called by the assanbler 0\LL

instruction. It is not necesery in FOR'IH.

Slbroutine hea:le r is def me:::1 as a variable with a dl.rl1II¥

value 0. When the nane is executEd, the address of its

paraneter field will be put on the sta:k to be used t1j the

CALL instruction.

Smu~e the header as usl.Bl.

189

-2WJ:Jr Backup the dictionary p:>inter to overwrite the dl.umrf 0 with

the Sllbroutine.

[CCMPILE] ASSEMBLm Get the assanbl.er to t:rcoess the rrnaooni.cs following.

!CSP Store SP fer error che:k.ing.

; IMMEDIATE

: 8* Multiply top of sta:k by 8.

WP + IX.JP + IX.JP + : Faster than <Ding real nultiplica tion on an 8080.

ASSEMBLER DEFINITIONS Set both the a:Nl'EX'l' and CURREN!' va::abularies

to ASSE11BLER Now, all sul:::sequent def .ini tions are put

into the ASSEMLER va::abulaty to be referenced by COlE

and :aiDE • The def.initions up to this point went into

the FORl'H vcx:al:lllary.

IS CXNsrPNr : Shorthand of CCN srJNr •

0 IS B

6 IS Ps-1

Following are register name def .initions:

liSC 2ISD 3ISE 4ISH SISL 6ISM 7ISA

6 IS "SP 2A28 IS NEXT

In 8080 fig-FORrH, NEXT was def ine:J as a code routine

starting at address 2A28 in manory. With NEXt' thus

defined as a cx::mstant, NEXT JMP should be the last

instruction in a code def .ini tion before C:

190

I

l

j

J

: lMI

<BU!Im

c,

tOES>

C@ C,

. ,

A defining wcrd to create single ~te 8080 instructions

without operCI'lds. MI stands for machine instruction.

Create a header with the name following.

Store instruction code on the stack to the tar meter field.

The following wcrds are to be execllte::l when the newly

defined mnenonic name is executa:l during assanbly.

Fetch the instruction code store::l in the FSrcrreter field an:J

assemble it into the dictionary as a byte literal.

The following single ~e instructions are def ine::l ~ lMI •

76 lMI HLT 07 lMI M.C OF lMI RK: 17 lMI RAL lF lMI RAR C9 lMI REI'

D8 lMI RC DO lMI RN: C8 lMI RZ CO lMI RNl FO lMI RP F8 lMI RM

E8 lMI RPE EO lMI Rro 2F lMI CMA 37 lMI S'D: 3F lMI Q1C 27 lMI I:1\A

FB lMI EI

EB lMI XCB:;

2MI

F3 lMI DI 00 lMI NCP E9 lMI PCl1L F9 lMI SPHL E3 X'lHL

A defining wcrd to define 8080A instructions with a sol,I['ce

operCI'ld. The source field is the least sigU.ficant 3 bits.

<BUILnS C, OOEB> Create a hecr:ler for the mnanoni.c name following.

C@ + C,

. ,

Store the instruction code in the taraneter field.

When the rmeooni.c def ina:l is executa:l, the code val.u: is

t:W.led out from the piraneter field, the nlll\ber representing

the source register on the sta:k is ad~ to the code a.nO

the completed instruction is assanbled to the dictionary.

The following 8080 instructions are defined by 2MI

191

80 2MI ADD 88 2MI AOC 90 2M! SJB 98 2MI SBB AD 2MI ANA M3 2MI XRA

BO 2MI ORA B8 2MI OIP

3MI A defining wcrd to def.ine 8080 instructions with destination

register st:ecified in the bits 3, 4, and 5.

<BUILDS C, OOES>

C@

8*

+ c,
. ,

When the mnanonic is executed dur .ing assanbly, the basic

code value is fetched fran the p:1raneter field.

The ot:erand' s re:;ister nunber on the stack is swapte<J over

the code value, and

multiplied by 8 to line up with the destination field.

AdJ the register number to the instruction arxl assanble it.

Folloong instructions are defined by 3MI

04 3MI INR OS 3MI ~ C7 3MI RST CS 3MI PUSH Cl 3MI rop

09 3MI Dl\0 02 3MI ST~ OA 3MI Lmx 03 3MI INX OB 3MI OCX

: 4MI A defining wcrd to def .ine 8080 instruction with an itmediate

byte value folloong the instruction code.

<BUILDS C, OOES>

C@ C, C,

.
I

The instruction code is fetched fran the fBrameter field an:1

assembled into the dictionacy, and the byte vallE given on

the stack is assenbled following the instruction code.

Exanples are:

192

I

J

l
]

I
1

I
1

C6 4MI ADI CE 4MI ACI D6 4MI SUI DE 4~li SBI E6 4~li .ANI EE 4MI XRI

F6 41-II ORl FE 4MI CPI IB 4MI IN 03 4MI aJT

: SMI A defining ward to de£ ine 8080 instruction taking a 16 bit

value as an operam, either as an address or as an il!m:!diate

value far cperations.

<BUn..DS C, OOES>

C@ C,

.
I

When the def ine:l menonic is execute:l, the instruction code

is assembled to the dictionary.

'lhe number on the sta:k is assanbl.ed after the instruction.

Exanples are:

C3 SMI JMP C) SMI OOJ.. 32 SMI STA 3A SMI Ltf\ 22 SMI SHLD 2A Sl'J LHLD

The 8080 IDV instruction needs two ot:erands to sp:cify the source

and destination registers for data rovements.

are p.lShed on the data stack for the

assemble as one instruction code. The

behave similarly.

: MJV bl b2

The two register numbers

KJV definition to pick up and

MVI and LXI instructions

Assemble a KJV instruction to the dictionary with bl

8*

representing SO'J.rce register and b2 destination register.

b2*8 is the destination f iel.d.

193

40

+ +

c,

i

8*

6

MVI

+ c,

c,

LXI

8* 1+ c,

,

i

Basic code for a l"DV instruction.

Add the source arxi destination fields to the instruction.

Assemble to dictionary.

bl b2 -

Assemble a ltYI instruction to dictionary, with b2 specifying

the destination field and bl the imrrediate byte vallE

folloong the instruction.

Destination field.

Basic MVI instruction code.

Assemble the instruction.

Assemble the iimediate byte vallE after the instruction.

n b-

Assemble a LXI instruction with b specifying the destination

register pair, and n as a two byte ixmediate vallE to be

loaded into the re;ister tair.

Assemble the LXI instruction.

Assemble the two byte inm:diate vallE after the instruction.

The foregoing discussion oovers most of the 8080 instruction

set with the exception of a:>rrlitional jurrp instructions. The reason is that

194

1

J

J

I
I
l
1
l

1

1

I
1

1

HERE

l

;

UNTIL

Sil~

l ?PAms

c,

,
.
I

: AGAIN

l ?PAms

C3 C,

.
I

: WHILE

Leve current IP on stac k for backward brandling fr an

the end of the loop.

Flag for error che:king.

addr n b -

End of an indef :ini te loop. Assanbl.e a conditional j ump

instruction b and address addr of BEGIN far backward

branching.

Get n to top of the stack for err.or che:king .

If n is not l , iss\.E an e~ror message.

Assemble b literally as a conditional jlllt'@ instruction.

Assemble the address addr of BEGlN far branching.

addr n -

End of an infinite loop. Assenble an unconditional jlmlp

instruction to brandl backward to addr •

Check n for error.

Assemble the JMP instruction,

with the address addr •

b - addr 4

197

IF

2+

.
I

REPEAT

>R >R

R> R> 2-

END IF

;

Abort an infinite locp fran the middle inside the loop.

Assemble a corxiitional jump instruction b , and leave

the I:P and a flag on the stack for REPEAT to resal ve the

backward jump address.

Used in the form: BEGIN • • • WHILE • • • REPEAT

Use IF to cb the dircy work.

The flag left by IF is 2. Charge it to 4 for REPEAT

to verify •

addrl nl addr2 n2 --

Assemble JMP addrl to dictionary to close the loop fran

BEGIN • Resolve forward jump address at addr2 as r9:iUire:i

by WHILE

Get addr2 and n2 out of way.

Let AGAIN assanble the backward jump.

Bring back addr2 and n2. Charge n2 back to 2.

Check error. Resolve jump address for WHILE

FORI'H DEFINITIONS The whole AC:iSEMBLER vocabulary is now canplete:i.

DECIMAL

restore the CCNrEXT and CURREN!' vocabularies to the

trunk FORI'H vocab.llary for normal pr og r armring activity.

Restore base fran hexadecimal.

198

1

1 INDEX

I t 90 ? 94
t> 91 ?COMP 68

1
fLAG 161 ?CSP 69
tLEAD 160 ?ERROR 65
tLOCATE 160 ?EXEC 69
ts 91 ?LOADING 69
' lOS ?PAIRS 69
(..) 80 ?STACK 70
(;CODE) 127 ABORT 42

I (+LOOP) 147 Address interpreter
(ABORT) 67 49
(DO) 145 AGAIN 141,197

)
(FIND) 99 ALLOT 98
(LINE) 82 ASCII character set
(LOOP) 146 3
(NUMBER) 86 ASSEMBLER 167

I +BUF 115 B 164,179
+LOOP 147 B/ BUF 35
, 99 B/ SCR 35

1
,OPERAND 178 BACK 140
--> 121 BASE 36
-FIND 99 BEGIN 140,196

J
-MOVE 153 BL 35
-TEXT 159 BLANKS 38
-TRAILING 79 BLK 36
• 94 BLOCK 112

J
" 80 BOP 180 •

.LINE 82 BRANCH 136

.R 94 BUFFER 115

1

OBRANCB 137 c 165
lLINE 162 c, 99
lMI 191 CFA 104

62 Characters 3
lOP 177 CLEAR 156
2M I 191 CODE 62,17 3,18 8
20P 181 Code field 59,123
3M I 192 Code instructions
4MI 192 14
SMI 193 COLD 41
• 64 Colon instructions ,
;CODE 126 12
;S 54 COMPILE 135
<t 89 Compiler 57
<BUILDS 128 Compi~er directives

133

199

129
15
36

CONSTANT
Constants
CONTEXT
Control structures

134
156
78
59
36
36

COPY
COUNT
CREATE
CSP
CURRENT
Current word pointer

D
D.
D.R

51
154
93
93
29 Data stack

Data stack pointer
51

DECIMAL 85
Defining Instructions

DEFINITIONS
DELETE
Dictionary
Disc memory
DO
DOCOL
DOCON
DODOE
DOES>
DOUSE
DOVAR
DP
DPL
ORO
DRl
DUMP
E
EDITOR
Editor
ELSE
ELSE,
EMPTY-BUFFERS
SNDIF
ENDIF,
ENTER CODE
ERASE
ERROR
Error handling
EXECUTE

12,20,123
102
163
27,97
109
145
53
130
129
128
132
131
36
36
118
119
95
154
151
149
139,196
184
118
138,196
184
173
38
67
65
52

200

EXPECT
F
FENCE
FILL
FINO
FIRST
FIXMOOE
FLO
FLUSH
FORGET
FORTH
FORTH loop
B
Header
HEX
BLD
BOLO
I
ID.
IF

71
164
36
37
163
35
177
36
119
106
101
40
153
59
85
36
90
145,155
81
138,195
183
133

IF,
IMMEDIATE
Inunediate words 133

36
8

IN
Instructions
Integers
INTERPRET
Interpreters
Interpretive

IP
IS
L
LATEST
LEAVE
LFA
LIMIT
LINE
Link field
LIST
LIT
LOAD
LOOP
M
MATCH
Memory map
MESSAGE
MOV
MVI
N

6
43
20

pointer
51
51
174,190
162
105
145
104
35
152
59
83
55
120
146
161
158
28
68
193
194
164

Name field 59
Nesting of colon

definitions SO
Nesting of structures

NEX~
NEXT,
NFA

14
52
187
104
195
47
88
15

NOT
NULL
NUMBER
Numbers
Numeric

OFFSET
OP
ORMODE
OUT
p
PAD

conversions
85
36
176
178
36
155
27

Parameter
PFA
POP
Precedence
PREV
PUSB
POT
QUERY
QUIT
R
Rt
R/W
RO

f ie1d 59
104
55

bit 58,60
36
55
55
74
42
155
36
116

REPEAT
REPEAT,
Return stack
Return stack

36
143,198
185
29,53

pointer

ROP
RP
RTST
s
so
SCR

51
179
51
174
51,153
36
36
91
64
60,64
92

SIGN
SMUDGE
Smudge bit
SPACE
SPACES
Standard

92
instructions

9

201

36,57
57
182

STATE
States
SWAPOP
System constants

35
T 162
Terminal input buffer

28,29
Terminal input out put

71
TEXT 152
Text interpreter

39
TIB 36
TILL 165
TOP 160
TRAVERSE 103
TYPE 77
UNTIL 141,197
UNTIL, 185
UPDATE 117
Update bit 111,118
USE 36
USER 132
User instructions

12
User variables 36
VARIABLE 130
Variables 15
Virtual FORTH computer

Virtual memory
VOC-LINK
VOCABULARY
Vocabulary
VLIST
w
WARNING
WBILE
WBILE,
WIDTH
WORD
Word buffer
words
X
[
[COMPILE]
1

8,27
109
36
101
17
107
51
36
142.197
186
36
74
27
4
47,155,164
54
136
58

•

CJ-/Rts M cBr<1£N,
I. fvlt LTO tJ 0 F STRA LOC 1-1,

N n..; M fl c J-1 A~,
2 1

A 6E{?_D££N) A6m. o G.E.

TEL:~ g}x:51-~
TEL ,·- 0 I b 6 I- % <6 2 3 7 q

I

_. h 1-.s 25 -o J.s

9

0

