
Microware C Compiler User’s Guide

for OS-9

Microware C Compiler User’s Guidefor OS-9
Copyright © 1983 Microware Systems Corporation.

All rights reserved.
Reproduction of this document, in part or whole, by any means, electrical or otherwise, is prohibited, except by written
permission from Microware Systems Corporation.
The information contained herein is believed to be accurate as of the date of publication, however, Microware will not
be liable for any damages, including indirect or consequential, from use of the OS-9 operating system or reliance on the
accuracy of this documentation. The information contained herein is subject to change without notice.

Revision History

Revision C June 1983

Table of Contents
Acknowledgements...vii
Differences between Versions 1.1 and 1.0... viii
1. The C Compiler System...1

1.1. Introduction ...1
1.2. The Language Implementation ...1
1.3. Differences from the K & R Specification ..1
1.4. Enhancements and Extensions..1

1.4.1. The “Direct” Storage Class ..2
1.4.2. Embedded Assembly Language...2
1.4.3. Control Character Escape Sequences...3

1.5. Implementation-dependent Characteristics..3
1.5.1. Data Representation and Storage Requirements3
1.5.2. Register Variables ...4
1.5.3. Access To Command Line Parameters ..4

1.6. System Calls and the Standard Library ...4
1.6.1. Operating System Calls ...4
1.6.2. The Standard Library ...4

1.7. Run-time Arithmetic Error Handling...5
1.8. Achieving Maximum Program Performance..5

1.8.1. Programming Considerations...5
1.8.2. The Optimizer Pass ..5
1.8.3. The Profiler ..5

1.9. C Compiler Component Files and File Usage...6
1.9.1. Temporary Files ..6

1.10. Running the Compiler ..7
1.11. Compiler Option Flags ...8

2. Characteristics of Compiled Programs ...10
2.1. The Object Code Module ...10

2.1.1. Module Header ...10
2.1.2. Execution Offset..10
2.1.3. Storage Size..10
2.1.4. Module Name ...11
2.1.5. Information..11
2.1.6. Executable Code..11
2.1.7. String Literals ..11
2.1.8. Initializing Data and its Size ...11
2.1.9. Data References...11

2.2. Memory Management ..12
2.2.1. Typical C Program Memory Map...12
2.2.2. Compile Time Memory Allocation ..13

3. C System Calls...15
Abort ..15
Abs..15
Access...16
Chain ..17
Chdir ..17
Chmod ...18
Chown..19
Close...19
Crc...20
Creat ...21
Defdrive ...21
Dup...22
Exit..23
Getpid ..23
Getstat ..24

iii

Getuid ..25
Intercept...26
Kill ..27
Lseek...28
Mknod..29
Modload ..30
Munlink ...30
_os9...31
Open...32
Os9fork...33
Pause ..34
Prerr..35
Read..35
Sbrk...36
Setpr ...37
Setime...37
Setuid ...38
Setstat ...38
Signal..39
Stacksize...41
Strass ..41
Tsleep..42
Unlink ..42
Wait...43
Write ...44

4. C Standard Library ...46
Atof...46
Fclose..47
Feof ...48
Findstr ..48
Fopen..49
Fread...51
Fseek...51
Getc...52
Gets...53
Isalpha..54
L3tol..55
Longjmp...55
Malloc...56
Mktemp..57
Printf...57
Putc...59
Puts...60
Qsort...60
Scanf ...61
Setbuf ...63
Sleep ...63
Strcat...64
System..65
Toupper..65
Ungetc ..66

A. C Reference Manual..68
A.1. Introduction ..68
A.2. Lexical Conventions...68

A.2.1. Comments...68
A.2.2. Identifiers (Names)..68
A.2.3. Keywords..68
A.2.4. Constants ..69
A.2.5. Strings..70

iv

A.2.6. Hardware Characteristics...70
A.3. Syntax Notation..70
A.4. What’s in a name? ..71
A.5. Objects and lvalues ..72
A.6. Conversions ..72

A.6.1. Characters and Integers..72
A.6.2. Float and Double ...72
A.6.3. Floating and Integral...72
A.6.4. Pointers and Integers ..72
A.6.5. Unsigned...73
A.6.6. Arithmetic Conversions..73

A.7. Expressions ...73
A.7.1. Primary Expressions ...74
A.7.2. Unary Operators ..75
A.7.3. Multiplicative Operators ..76
A.7.4. Additive Operators ...77
A.7.5. Shift Operators ...77
A.7.6. Relational Operators ...78
A.7.7. Equality Operators ..78
A.7.8. Bitwise AND Operator ...78
A.7.9. Bitwise Exclusive OR Operator ...78
A.7.10. Bitwise Inclusive OR Operator ..79
A.7.11. Logical AND Operator ...79
A.7.12. Logical OR Operator ...79
A.7.13. Conditional Operator..79
A.7.14. Assignment Operators..80
A.7.15. Comma Operator...80

A.8. Declarations ..81
A.8.1. Storage Class Specifiers ..81
A.8.2. Type Specifiers ...82
A.8.3. Declarators..82
A.8.4. Meaning of Declarators ..82
A.8.5. Structure and Union Declarations...84
A.8.6. Initialization ...86
A.8.7. Type Names..88
A.8.8. Typedef..89

A.9. Statements ...89
A.9.1. Expression Statement..89
A.9.2. Compound Statement or Block ...89
A.9.3. Conditional Statement ..90
A.9.4. While Statement...90
A.9.5. Do Statement ..90
A.9.6. For Statement ...91
A.9.7. Switch Statement ...91
A.9.8. Break Statement ...92
A.9.9. Continue Statement...92
A.9.10. Return Statement ...92
A.9.11. Goto Statement...93
A.9.12. Labeled Statement ...93
A.9.13. Null Statement ...93

A.10. External Definitions ...93
A.10.1. External Function Definitions..93
A.10.2. External Data Definitions ...94

A.11. Scope Rules ...95
A.11.1. Lexical Scope ..95
A.11.2. Scope of Externals..95

A.12. Compiler Control Lines...96
A.12.1. Token Replacement ...96
A.12.2. File Inclusion ..97
A.12.3. Conditional Compilation..97

v

A.12.4. Line Control..98
A.13. Implicit Declarations..98
A.14. Types Revisited...98

A.14.1. Structures and Unions ..98
A.14.2. Functions...99
A.14.3. Arrays, Pointers, and Subscripting ...99
A.14.4. Explicit Pointer Conversions ...100

A.15. Constant Expressions...101
A.16. Portability Considerations ..101
A.17. Anachronisms...102
A.18. Syntax Summary ..102

A.18.1. Expressions...102
A.18.2. Declarations..104
A.18.3. Statements...106
A.18.4. External definitions ...106
A.18.5. Preprocessor ...107

B. Compiler Generated Error Messages ...108
C. Compiler Phase Command Lines ...113

C.1. cc1 & cc2 (C executives)...113
C.2. c.prep (C macro preprocessor)..114
C.3. c.comp (One-pass compiler) ...114
C.4. c.pass (Pass One/Two of Two-pass Compiler) ..114
C.5. c.opt (Assembly code optimizer) ...114
C.6. c.asm (Assembler) ..115
C.7. c.link (Linker) ..115

D. Interfacing to Basic09..117
D.1. Example 1 - Simple Integer Aritmetic Case..117
D.2. Example 2 - More Complex Integer Aritmetic Case119
D.3. Example 3 - Simple String Manipulation..120
D.4. Example 4 - Quicksort ...121
D.5. Example 5 - Floating Point..124
D.6. Example 6 - Matrix Elements..126

E. Relocating Macro Assembler Reference ..127
E.1. Symbolic Names ...127
E.2. Label field...127
E.3. Undefined names..127
E.4. Listing format ..127
E.5. Section Location Counters...128
E.6. Section Directives..128

E.6.1. PSECT Directive ...128
E.6.2. VSECT Directive...129
E.6.3. CSECT Directive...129
E.6.4. RZB statement...130

E.7. Comparison Between Assembly Programs for the Microware Interactive
Assember and the Relocating Macro Assembler130
E.7.1. Macro Interactive Assembler Source...130

E.8. Introduction to Macros...131
E.9. Operations..131

E.9.1. Macro Definition...131
E.9.2. Nested Macro Calls ..132
E.9.3. Labels ...133
E.9.4. Additional Pseudo-Instructions...133

vi

Acknowledgements

The OS-9 C Compiler was written by James McCosh with OS-9 implementation as-
sistance from Terry Crane and Kim Kempf. The Relocatable Assembler, Linker, and
Profiler was edited by Wes Camden and Ken Kaplan.

vii

Differences between Versions 1.1 and 1.0

Important Notice - Please Read Carefully
This package contains the OS-9 C Compiler Version 1.1. Many im-
provements and bug fixes have been incorporated since the V1.0 re-
lease. If you are upgrading from V1.0, be absolutely sure to all all the
files from the V1.1 disks. None of the compiler sections or the library
is compatible with V1.0 files. Any ".r" or ".a" files produced by the V1.0
compiler should not be assembled or linked with any ".a" or ".r" files
produced by the V1.1 compiler. To be safe, recompile/reassemble all
".a" and ".r" files with V.1.1.

This update include appendices for the C Compiler User’s Guide de-
scribing the compiler error messages, compiler phase command lines,
interfacing C functions to BASIC09, and an overview of the relocating
macro assembler.

The remainder of this notice describes the changes made since V1.0.

General:

The compiler code generator and c.opt have been improved to produce even
smaller object code. This, and improved source coding, has resulted in a 1 page
decrease in the size of c.comp and a 4 page decrease in c.pass1.

Executives (cc1 and cc2):

-x appearing on the cc1 command line causes the compiler to make the c.com
command file but not execute it. -q on the cc2 command line causes the compiler
to suppress filename and compiler phase messages.

Preprocessor (c.prep):

C.prep now prints a fatal error if a line exceeds 255 bytes.

Compiler (c.comp, c.pass1, c.pass2):

C.pass1 float/double conversion is now done properly rather than reporting er-
ror 7.

Direct and static direct storage classes may now be initialized.

Sizeof operator now reports an error when applied to an undefined identifier.
Sizeof now allows any expression inside of parenthesis. Previously, only pri-
maries were allowed.

Various code generation problems involving certain long and floating operations
have been fixed.

Optimizer (c.opt):

C.opt has been improved to use much less dynamic memory while performing
optimizations.

Some branches were erroneously converted to short branches when they should
have been long.

Assembler (c.asm):

C.asm can now handle direct-page initialized data.

Some out-of-range short branches were not detected.

VSECT syntax changed to allow direct-page initializers. This make V1.0 assem-
bly file incompatible with V1.1.

viii

Differences between Versions 1.1 and 1.0

Macro and repeat block facilities have been added.

Linker (c.link):

C.link can now handle direct-page initialized data.

C.link will now report if the direct page allocations exceeds 256 bytes.

C.link is about three times faster using the improved V1.1 standard library.

C.link can now output modules that can be entered by the BASIC09 "RUN" com-
mand.

Library (clib.l):

The standard library FILE structure has been changed to allow specification of
buffersize for a file. In V1.0, the buffersize was fixed at 256 bytes. A new element
of the FILE struct (_bufsiz) contains the desired buffer size. This may be used as
follows:
main()
{

FILE *fp;

fp=fopen("file","r");
fp->_bufsiz = 1024;

.....
}
A few restrictions exist on the use of this parameter. Initially the _bufsiz value is
0. The library routines will assign a buffer of 256 bytes to the file upon initial read
or write. If the value is non-zero and the fp has not previously been accessed,
that value is used as the buffersize. Note that due to the way the library routines
work, once a buffer of a given size is allocated to an fp, a larger size cannot be
used, even if the file is closed. Note that the buffers are allocated from the ibrk()
so enough extra memory must be allocated by the linker to handle the bigger
buffers.

Since the size of the _iobuf struct (FILE) in stdio.h has changed, all .r files must
be re-compiled using the new header file.

Cstart.r can now handle direct page data initialization.

Fseek() now does not cause the buffer to be re-filled if the seek destination is
already in the buffer.

Getc() now does "I$READ" on unbuffered SCF devices rather than "I$READLN".

Getc() performed on "stdin" flushes the "stdout" buffer.

Printf() has been changed to not flush the "stdout" buffer before returning.

Chown() has been fixed to not wipe out disks.

Toascii() has been added to stdio.h

Calls to scanf() now do not cause the linker to reports unresolved references to
toupper() and tolower().

The floating point routines now report errors 40, 41, and 42 for floating point
over/underflow, divide by zero, and float/long conversion instead of error #007.

ix

Chapter 1. The C Compiler System

1.1. Introduction
The "C" programming language is rapidly growing in popularity and seems destined
to become one of the most popular programming languages used for microcomput-
ers. The rapid rise in the use of C is not surprising. C is an incredibly versatile and
efficient language that can handle tasks that previously would have required com-
plex assembly language programming.

C was originally developed at Bell Telephone Laboratories as an implementation lan-
guage for the UNIX operating system by Brian Kernighan and Dennis Ritchie. They
also wrote a book titled “The C Programming Language” which is universally ac-
cepted as the standard for the language. It is an interesting reflection on the language
that although no formal industry-wide “standard” was ever developed for C, pro-
grams written in C tend to be far more portable between radically different computer
systems as compared to so-called “standardized” languages such as BASIC, COBOL,
and PASCAL. The reason C is so portable is that the language is so inherently expand-
able that is some special function is required, the user can create a portable extension
to the language, as opposed to the common practice of adding additional statements
to the language. For example, the number of special-purpose BASIC dialects defies
all reason. A lesser factor is the underlying UNIX operating system, which is also
sufficiently versatile to discourage bastardization of the language. Indeed, standard
C compilers and Unix are intimately related.

Fortunately, the 6809 microprocessor, the OS-9 operating system, and the C language
form an outstanding combination. The 6809 was specifically designed to efficiently
run high-level languages, and its stack-oriented instruction set and versatile reper-
toire of addressing modes handle the C language very well. As mentioned previously,
UNIX and C are closely related, and because OS-9 is derived from UNIX, it also sup-
ports C to the degree that almost any application written in C can be transported
from a UNIX system to an OS-9 system, recompiled, and correctly executed.

1.2. The Language Implementation
OS-9 C is implemented almost exactly as described in ’The C Programming Lan-
guage’ by Kernighan and Ritchie (hereafter referred to as K&R).

Allthough this version of C follows the specification faithfully, there are some dif-
ferences. The differences mostly reflect parts of C that are obsolete or the constraints
imposed by memory size limitations.

1.3. Differences from the K & R Specification

• Bit fields are not supported.
• Constant expressions for initializers may include arithmetic operators only if all

the operands are of type INT or CHAR.
• The older forms of assignment operators, ’=+’ or ’=*’, which are recognized by

some C compilers, are not supported. You must use the newer forms ’+=’,’*=’ etc.
• "#ifdef (or #ifndef) ...[#else...] #endif" is supported but "#if <constant expression>"

is not.
• It is not possible to extend macro definitions or strings over more than one line of

source code.
• The escape sequence for new-line ’\n’ refers to the ASCII carriage return character

(used by OS-9 for end-of-line), not linefeed. (hex 0A). Programs which use ’\n’ for
end-of-line (which includes all programs in K & R), will still work properly.

1

Chapter 1. The C Compiler System

1.4. Enhancements and Extensions

1.4.1. The “Direct” Storage Class
The 6809 microprocessor instructions for accessing memory via an index register or
the stack pointer can be relatively short and fast when they are used in C programs
to access "auto" (function local) variables or function arguments. The instructions for
accessing global variables are normally not so nice and must be four bytes long and
correspondingly slow. However, the 6809 has a nice feature which helps consider-
ably. Memory, anywhere in a single page (256 byte block), may be accessed with fast,
two byte instructions. This is called the "direct page", and at any time its location is
specified by the contents of the "direct page register" within the processor. The link-
age editor sorts out where this could be, and it need not concern the programmer,
who only needs to specify for the compiler which variables should be in the direct
page to give the maximum benefit in code size and execution speed.

To this end, a new storage class specifier is recognized by the compiler. In the manner
of K & R page 192, the sc-specifier list is extended as follows:

Sc-specifier: auto

static

extern

register

typedef

direct (extension)

extern direct (extension)

static direct (extension)

The new key word may be used in place of one of the other sc-specifiers, and its effect
is that the variable will be placed in the direct page. "DIRECT" creates a global direct
page variable. "EXTERN DIRECT" references an EXTERNAL-type direct page vari-
able; and "STATIC DIRECT" creates a local direct page variable. These new classed
may not be used to declare function arguments. "Direct" variables can be initialized
but will, as with other variables not explicitly initialized, have the value zero at the
start of program execution. 255 bytes are available in the direct page (the linker re-
quires one byte). If all the direct variables occupy less than the full 255 bytes, the
remaining global variables will occupy the balance and memory above if necesary.
If too many bytes or storage are requested in the direct page, the linkage editor will
report an error, and the programmer will have to reduce the use of DIRECT-type
variables to fit the 256 bytes addressable by the 6809.

It should be kept in mind that "direct" is unique to this compiler, and it may not be
possible to transport programs written using "direct" to other environments without
modification.

1.4.2. Embedded Assembly Language
As versatile as C is, occasionally there are some things that can only be done (or
done at maximum speed) in assembly language. The OS-9 C compiler permits user-
supplied assebly-language statements to be directly embedded in C source programs.

A line beginning with "#asm" switches the compiler into a mode which passes all
subsequent lines directly to the assembly-language output, until a line beginning
with "#endasm" is encountered. "#endasm" switches the mode back to normal. Care
should be exercised when using this directive so that the correct code section is ad-
hered to. Normal code from the compiler is in the PSECT (code) section. If your as-

2

Chapter 1. The C Compiler System

sembly code uses the VSECT (variable) section, be sure to put a ENDSECT directive
at the end to leave the state correct for following compiler generated code.

1.4.3. Control Character Escape Sequences
The escape sequences for non-printing characters in character constants and strings
(see K & R page 181) are extended as follows:

linefeed (LF): \l (lower case ’ell’)

This is to distinguish LF (hex 0A) from \n which on OS-9 is the same as \r (hex 0D).

bit patterns: \NNN (octal constant)
\dNNN (decimal constant)
\xNN (hexadecimal constant)

For example, the following all have a value of 255 (decimal):

\377 \xff \d255

1.5. Implementation-dependent Characteristics
K & R frequently refer to characteristics of the C language whose exact operations
depend on the architacture and instruction set of the computer actually used. This
section contains specific information regarding this version of C for the 6809 proces-
sor.

1.5.1. Data Representation and Storage Requirements
Each variable type requires a specific amount of memory for storage. The sizes of the
basic types in bytes are as follows:

Data Type Size Internal Representation

CHAR 1 two’s complement binary

INT 2 two’s complement binary

UNSIGNED 2 unsigned binary

LONG 4 two’s complement binary

FLOAT 4 binary floating point (see below)

DOUBLE 8 binary floating point (see below)

This compiler follows the PDP-1 implementation and format in that CHARs are con-
verted to INTs by sign extension, "SHORT" or "SHORT INT" means INT, "LONG INT"
means LONG and "LONG FLOAT" means DOUBLE. The format for DOUBLE values
is as follows:

(low byte) (high byte)
+-+---------------------------------------+----------+
! ! seven byte ! !
! ! mantissa ! !
+-+---------------------------------------+----------+
^ sign bit

3

Chapter 1. The C Compiler System

The for of the mantissa is sign and magnitude with an implied "1" bit at the sign bit
position. The exponent is biased by 128. The format of a FLOAT is identical, except
that the mantissa is only three bytes long. Conversion from DOUBLE to FLOAT is
carried out by truncating the least significant (right-most) four bytes of the mantissa.
The reverse conversion is done by padding the least significant four mantissa bytes
with zeros.

1.5.2. Register Variables
One register variable may be declared in each function. The only types permitted for
register variables are int, unsigned and pointer. Invalid register variable declarations
are ignored; i.e. the storage class is made auto. For further details see K & R page 81.

A considerable saving in code size and speed can be made by judicious use of a
register variable. The most efficient use is made of it for a pointer or a counter for
a loop. However, if a register variable is used for a complex arithmetic expression,
there is no saving. The "U" register is assigned to register variables.

1.5.3. Access To Command Line Parameters
The standard C arguments "argc" and "argv" are available to "main" as described in
K & R page 110. The start-up routine for C programs ensures that the parameter
string passed to it by the parent process is converted into null-terminated strings as
expected by the program. In addition, it will run together as a single argument any
strings enclosed between single or double quotes ("’" or ’"’). If either is part of the
string required, then the other should be used as a delimiter.

1.6. System Calls and the Standard Library

1.6.1. Operating System Calls
The system interface supports almost all the system calls of both OS-9 and UNIX. In
order to facilitate the portability of programs from UNIX, some of the calls use UNIX
names rather than OS-9 names for the same function. There are a few UNIX calls
that do not have exactly equivalent OS-9 calls. In these cases, the library function
simulates the function of the corresponding UNIX call. In cases where there are OS-
9 calls that do not have UNIX equivalents, the OS-9 names are used. Details of the
calls and a name cross-reference are provided in the "C System Calls" section of this
manual.

1.6.2. The Standard Library
The C compiler includes a very complete library of standard functions. It is essential
for any program which uses functions from the standard library to have the state-
ment:

"#include <stdio.h>

See the "C Standard Library" section of this manual for details on the standard library
functions provided.

IMPORTANT NOTE: If output via printf(), fprintf() or sprintf() of long integers is re-
quired, the program MUST call "pflinit()" at some point; this is necessary so that pro-
grams not involving LONGS do not have the extra LONGs output code appended.
Similarly, if FLOATs or DOUBLEs are to be printed, "pffinit()" MUST be called. These

4

Chapter 1. The C Compiler System

functions do nothing; existence of calls to them in a program informs the linker that
the relevant routines are also needed.

1.7. Run-time Arithmetic Error Handling
K & R leave the treatment of various arithmetic errors open, merely saying that it is
machine dependent. This implementation deal with a limited number of error condi-
tions in a special way; it should be assumed that the results of other possible errors
are undefined.

Three new system error numbers are defined in <errno.h>:

#define EFPOVR 40 /* floating point overflow of underflow */
#define EDIVERR 41 /* division by zero */
#define EINTERR 42 /* overflow on conversion of floating point

to long integer */

If one of these conditions occur, the program will send a signal to itself with the
value of one of these errors. If not caught or ignored, the will cause termination of
program with an error return to the parent process. However, the program can catch
the interrupt using "signal()" or "intercept()" (see C System Calls), and in this case the
service routine has the error number as its argument.

1.8. Achieving Maximum Program Performance

1.8.1. Programming Considerations
Because the 6809 is an 8/16 bit microprocessor, the compiler can generate efficient
code for 8 and 16 bit objects (CHARs, INTs, etc.). However, code for 32 and 64 bit
values (LONGs, FLOATs, DOUBLEs) can be at least four times longer and slower.
Therefore don’t use LONG, FLOAT, or DOUBLE where INT or UNSIGNED will do.

The compiler can perform extensive evaluation of constant expressions provided
they involve only constants of type CHAR, INT, and UNSIGNED. There is no con-
stant expression evaluation at compile-time (except single constants and "casts" of
them) where there are constants of type LONG, FLOAT, or DOUBLE, therefore, com-
plex constant expressions involving these types are evaluated at run time by the com-
piled program. You should manually compute the value of constant expressions of
these types if speed is essential.

1.8.2. The Optimizer Pass
The optimizer pass automatically occurs after the compilation passes. It reads the
assembler source code text and removes redundant code and searches for code se-
quences that can be replaced by shorter and faster equivalents. The optimizer will
shorten object code by about 11% with a significant increase in program execution
speed. The optimizer is recommended for production versions of debugged pro-
grams. Because this pass takes additional time, the "-O" compiler option can be used
to inhibit it during error-checking-only compilations.

1.8.3. The Profiler
The profiler is an optional method used to determine the frequency of execution of
each function in a C program. It allows you to identify the most-frequently used

5

Chapter 1. The C Compiler System

functions where algorithmic or C source code programming improvements will yield
the greatest gains.

When the "-P" compiler option is selected, code is generated at the beginning of each
function to call the profiler module (called "_prof"), which counts invocations of each
function during program execution. When the program has terminated, the profiler
automatically prints a list of all functions and the number of times each was called.
The profiler slightly reduces program execution speed. See "prof.c" source for more
information.

1.9. C Compiler Component Files and File Usage
Compilation of a C program by cc requires that the following files be present in the
current execution directory (CMDS).

Table 1-1. OS-9 Level I Systems

cc1 compiler executive program

c.prep macro pre-processor

c.pass1 compiler pass 1

c.pass2 compiler pass 2

c.opt assembly code optimizer

c.asm relocating assembler

c.link linkage editor

Table 1-2. OS-9 Level II Systems

cc2 compiler executive program

c.prep macro pre-processor

c.comp compiler proper

c.opt assembly code optimizer

c.asm relocating assembler

c.link linkage editor

In addition a file called "clib.l" contains the standard library, math functions, and
systems library. The file "cstart.r" is the setup code for compiled programs. Both of
these files must be located in a directory named "LIB" on the system’s default mass
storage device, which is specified in the OS-9 "INIT" module and is usually the disk
drive the system is booted from.

If, when specifying "#include" files for the pre-processor to read in, the programmer
uses angle brackets, "<" and ">", instead of parentheses, the file will be sought starting
at the "DEFS" directory on whichever drive is the default system drive for the system
running.

1.9.1. Temporary Files
A number of temporary files are created in the current data directory during compi-
lation, and it is important to ensure that enough space is available on the disk drive.
As a rough guide, at least three times the number of blocks in the largest source file
(and its included files) should be free.

6

Chapter 1. The C Compiler System

The identifiers "etext", "edata", and "end" are predefined in the linkage editor and
may be used to establish the addresses of the end of executable text, initialized data,
and uninitialized data respectively.

1.10. Running the Compiler
The are two commands which invoke distinct versions of the compiler. "cc1" is for
OS-9 Level I which uses a two pass compiler, and, "cc2" is for Level II which causes
a single pass version. Both versions of the compiler works identically, the main dif-
ference is that cc1 has been divided into two passes to fit the smaller memory size of
OS-9 Level I systems. In the following text, "cc" refers to either "cc1" or "cc2" as ap-
propiate for your system. The syntax of the command line which calls the compiler
is:

cc [option-flags] file...

One file at a time can be compiled, or a number of files may be compiled together.
The compiler manages the compilation up to four stages: pre-processor, compilation
to assembler code, assembly to relocatable code, and linking to binary executable
code (in OS-9 memory module format).

The compiler accepts three types of source files, provided each name on the com-
mand line has the relevant postfix as shown below. Any of the above file types may
be mixed on the command line.

Table 1-3. File Name Suffix Conventions

Suffix Usage

.c C source file

.a assembly language source file

.r relocatable module

none executable binary (OS-9 memory module)

There are two modes of operation: multible source file and single source file. The
compiler selects the mode by inspecting the command line. The usual mode is single
source and is specified by having only one source file name on the command line. Of
course, more than one source file may be compiled together by using the "#include"
facility in the source code. In this mode, the compiler will use the name obtained by
removing the postfix from the name supplied on the command line, and the output
file (and the memory module produced) will have this name. For example:

cc prg.c

will leave an executable file called "prg" in the current execution directory.

The multiple source mode is specified by having more than one source file name
on the command line. In this mode, the object code output file will have the name
"output" in the current execution directory, unless a name is given using the "-f="
option (see below). Also, in multiple source mode, the relocatable modules generated
as intermediate files will be left in the same directories as their corresponding source
files with the postfixes changed to ".r". For example:

cc prg1.c /d0/fred/prg2.c

will leave an executable file called "output" in the current execution directory, one file
called "prg1.r" in the current data directory, and "prg2.r" in "/d0/fred".

7

Chapter 1. The C Compiler System

1.11. Compiler Option Flags
The compiler recognizes several command-line option flags which modify the compi-
lation process where needed. All flags are recognized before compilation commences
so the flags may be placed anywhere on the command line. Flags may be ran together
as in "-ro", except where a flag is followed by something else; see "-f=" and "-d" for
examples.

-A suppresses assembly, leaving the output as assembler code in a file whose name
is postfixed ".a".

-E=<number> Set the edition number constant byte to the number given. This is an
OS-9 convention for memory modules.

-O inhibits the assembly code optimizer pass. The optimizer will shorten object code
by about 11% with a comparable increase in speed and is recommended for produc-
tion versions of de-bugged programs.

-P invokes the profiler to generate function frequency statistics after program execu-
tion.

-R suppresses linking library modules into an executable program. Outputs are left
in files with postfixes ".r".

-M=<memory size> will instruct the linker to allocate <memory size> for data, stack,
and parameter area. Memory size may be expressed in pages (an integer) or in kilo-
bytes by appending "k" to an integer. For more details of the use of this option, see
the "Memory Management" section of this manual.

-L=<filename> specifies a library to be searched by the linker before the Standard
Library and system interface.

-F=<path> overrides the above output file naming. The output file will be left with
<filename> as its name. This flag does not make sense in multiple source mode, and
either the -a or -r flag is also present. The module will be called the last name in
<path>.

-C will output the source code as comments with the assembler code.

-S stops the generation of stack-checking code. -S should only be used with great
care when the appication is extremely time-critical and when the use of the stack by
compiler generated code is fully understood.

-D<identifier> is equivalent to "#define <identifier>" written in the source file. -D is
useful where different versions of a program are maintained in one source file and
differentiated by means of the "#ifdef" of "#ifndef" pre-processor directives. If the
<identifier> is used as a macro for expansion by the pre-processor, "1"(one) will be
the expanded "value" unless the form "-d<identifier>=<string>" is used in which case
the expansion will be <string>.

Table 1-4. Command Line and Option Flag Examples

command line action output file(s)

cc prg.c compile to an
executable program

prg

cc prg.c -a compile to assembly
language source code

prg.a

cc prg.c -r compile to relocatable
module

prg.r

cc prg1.c prg2.c prg3.c compile to executable
program

prg1.r, prg2.r, prg3.r,
output

8

Chapter 1. The C Compiler System

command line action output file(s)
cc prg1.c prg2.a prg3.r compile prg1.c,

assemble prg2.a and
combine all into and
executable program

prg1.r, prg2.r

cc prg1.c prg2.c -a compile to assembly
language source code

prg1.a, prg2.a

cc prg1.c prg2.c -f=prg compile to executable
program

prg

9

Chapter 2. Characteristics of Compiled Programs

2.1. The Object Code Module
The compiler produces position-independent, reentrant 6809 code in a standard OS-
9 memory module format. The format of an executable program module is shown
below. Detailed descriptions of each section of the module are given on following
pages.

Module Section
Offset Size (bytes)

+-------------------------------+
$00 ! !

! Module Header ! 8
! !
!-------------------------------!

$09 ! Execution Offset ! ---+ 2
!-------------------------------! !

$0B ! Permanent Storage Size ! ! 2
!-------------------------------! !

$0D ! Module Name ! !
! ! !
v v <--+
: Executable code :
: :
: String Literals :
^ ^
!-------------------------------!
! Initializing Data Size ! 2
!-------------------------------!
v v
: Initializing Data :
^ ^
!-------------------------------!
! Data-text Reference Count ! 2
!-------------------------------!
v v
: Data-text Reference Offsets :
^ ^
!-------------------------------!
! Data-data Reference Count ! 2
!-------------------------------!
v v
: Data-data Reference Offsets :
^ ^
!-------------------------------!
! CRC Check Value ! 3
!-------------------------------!

2.1.1. Module Header
This is a standard module header with the type/language byte set to $11 (Program +
6809 Object Code), and the attribute/revision byte set to $81 (Reentrant + 1).

2.1.2. Execution Offset
Used by OS-9 to locate where to start execution of the program.

10

Chapter 2. Characteristics of Compiled Programs

2.1.3. Storage Size
Storage size is the initial default allocation of memory for data, stack, and parameter
area. For a full description of memory allowcation, see the section entitled “Memory
Management” located elsewhere in this manual.

2.1.4. Module Name
Module name is used by OS-9 to enter the module in the module directory. The mod-
ule name is followed by the edition byte encoded in cstart. If this situation is not
desired it may be overridden by the -E= option in cc.

2.1.5. Information
Any strings preceded by the directive "info" in an assembly code file will be placed
here. A major use of this facility is to place in the module the version number and/or
a copyright notice. Note that the ’#asm’ pre-compiler instruction may be used in a C
source file to enable the inclusion of this directive in the compiler-generated assembly
code file.

2.1.6. Executable Code
The machine code instructions of the program.

2.1.7. String Literals
Quoted string in the C source are placed here. They are in the null-terminated form
expected by the functions in the Standard Library. NOTE: the definition of the C
language assumes that strings are in the DATA area and are therefore subject to al-
teration without making the program non-reentrant. However, in order to avoid the
dublication of memory requirements which would be necesary if they were to be in
the data area, they are placed in the TEXT (executable) section of the module. Putting
the strings in the executable section implies that no attempt should be made by a C
programmer to alter string literals. They should be copied out first. The exception
that proves the rule is the initialization of an array of type char like this:

char message[] = "Hello world\n";

The string will be found in the array ’message’ in the data area and can be altered.

2.1.8. Initializing Data and its Size
If a C program contains initializers, the data for the initial values of the variables
is placed in this section. The definition of C states that all uninitialized global and
static variables have the value zero when the program starts running, so the startuo
rougtine of each C program first copies the data from the module into the data area
and then clears the rest of the data memory to nulls.

2.1.9. Data References
No absolute addresses are known at compile time under OS-9, so where there are
pointer values in the initializating data, they must be adjusted at run time so that
they reflect the absolute values at that time. The startup routine uses the two data

11

Chapter 2. Characteristics of Compiled Programs

reference tables to locate the values that need alteration and adjusts them by the
absolute values of the bases of the executable code and data respectively.

For example, suppose there are the following statements in the program being com-
piled:

char *p = "I’m a string!";
char **q = &p;

These declarations tell the compiler that there is to be a char pointer variable, ’p’,
whose initial value is the address of the string and a pointer to a char pointer, ’q’,
whose initial value is the address of ’p’. The variables must be in the DATA section
of memory at run time because they are potentially alterable, but absolute addresses
are not known until run time, so the values that ’p’ and ’q’ must have are not known
at compile time. The string will be placed by the compiler in the TEXT section and
will not be copied out to DATA memory by the startup routine. The initializing data
section of the program module will contain entries for ’p’ and ’q’. They will have as
values the offsets of the string from the base of the TEXT section and the offset of the
location of ’p’ from the base of the DATA section respectively.

The startup routine will first copy all the entries in the initializing data section into
their allotted places in the DATA section. Then it will scan the data-text reference
table for the offsets of values that need to have the addresses of the base of the TEXT
section added to them. Among these will be the "p" which, after updating, will point
to the string which is in the TEXT section. Similarly, after a scan of the data-data
references, "q" will point to (contain the absolute of) "p".

2.2. Memory Management
The C compiler and its support programs have default conditions such that the aver-
age programmer need not be concerned with details of memory management. How-
ever, there are situations where advanced programmers may wish to tailor the stor-
age allocation of a program for special situations. The following information explains
in detail how a C program’s data area is allocated and used.

2.2.1. Typical C Program Memory Map
A storage area is allocated by OS-9 when the C program is executed. The layout of
this memory is as follows:

high addresses
| | <- SBRK() adds more
| | memory here
| |
!------------------! <- memend
! parameters !
!------------------!
! !

Current stack | stack | <- sp register
reservation -> !..................!

! v !
! ! <- standard I/O buffers
! free memory ! allocated here

Current top ! !
of data -> !........^.........! <- IBRK() changes this

! ! memory bound upward
! requested memory !
!------------------! <-- end
! uninitialized !
! data !
!------------------! <-- edata

12

Chapter 2. Characteristics of Compiled Programs

! initialized !
! data !
!------------------!

^ ! direct page !
dpsiz ! variables !
v +------------------+ <-- y,dp registers

low addresses

The overall size of this memory area is defined by the "storage size" value stored in
the program’s module header. This can be overridden to assign the program addi-
tional memory if the OS-9 Shell "#" command is used.

The parameter area is where the parameter string from the calling process (typically
the OS-9 Shell) is placed by the system. The initializing routine for C programs con-
verts the parameters into null-terminated strings and makes pointers to them avail-
able to ’main()’ via ’argc’ and ’argv’.

The stack area is the currently reserved memory for exclusive use of the stack. As each
C function is entered, a routine in the system interface is called to reserve enough
stack space for the use of the function with an addition of 64 bytes. The 64 bytes
are for the use of user-written assembly code functions and/or the system interface
and/or arithmetic routines. A record is kept of the lowest address so far granted for
the stack. If the area requested would not bring this lower then the C function is
allowed to proceed. If the new lower limit would mean that the stack area would
overlap the data area, the program stops with the message:

**** STACK OVERFLOW ****

on the standard error output. Otherwise, the new lower limit is set, and the C function
resumes as before.

The direct page variables area is where variables reside that have been defined with
the storage class ’direct’ in the C source code or in the ’direct’ segment in assembly
code source. Notice that the size of this area is always at least one byte (to ensure that
no pointer to a variable can have the value NULL or 0) and that it is not necessarily
256 bytes.

The uninitialized data area is where the remainder of the uninitialized program vari-
ables reside. These two areas are, in fact, cleared to all zeros by the program entry
routine. The initialized data area is where the initialized variables of the program
reside. There are two globally defined values which may be referred to: ’edata’ and
’end’, which are the addresses of one byte higher than the initialized data and one
byte higher than the uninitialized data respectively. Note that these are not variables;
the values are accesses in C by using the ’&’ operator as in:

high = &end;
low = &edata;

and in assembler:

leax end,y
stx high,y

The Y register points to the base of the data area and variables are addresses using
Y-offset indexed instructions.

When the program starts running, the remaining memory is assigned to the "free"
area. A program may call "ibrk()" to request additional working memory (initialized
to zeros) from the free memory area. Alternatively, more memory can be dynamically
obtained using the "sbrk()" which requests additional memory from the operating
system and returns its lower bound. If this fails because OS-9 refuses to grant more
memory for any reason "sbrk()" will return -1.

13

Chapter 2. Characteristics of Compiled Programs

2.2.2. Compile Time Memory Allocation
If not instructed otherwise, the linker will automatically allocate 1k bytes more than
the total size of the program’s variables and strings. This size will normally be ad-
equate to cover the parameter area, stack requirements, and Standard Library file
buffers. The allocation size may be altered when using the compiler by using the "-
m" option on the command line. The memory requirements may be stated in pages,
for example,

cc prg.c -m=2

which allocates 512 bytes extra, or in kilobytes, for example:

cc prg.c -m=10k

The linker will ignore the request if the size is less than 256 bytes.

The following rules can serve as a rough guide to estimate how much memory to
specify:

1. The parameter area should be large enough for any anticipated command line
string.

2. The stack should not be less than 128 bytes and should take into account the
depth of function calling chains and any recursion.

3. All function arguments and local variables occupy stack space and each func-
tion entered needs 4 bytes more for the return address and temporary storage
of the calling function’s register variable.

4. Free memory is requested by the Standard Library I/O functions for buffers at
the rate of 256 bytes per accessed file. The does not apply to the lower level ser-
vice request I/O functions such as "open()", "read()" or "write()" not to "stderr"
which is always un-buffered, but it does apply to both "stdin" and "stdout" (see
the Standard Library documentation).

A good method for getting a feel for how much memory is needed by your program
is to allow the linker to set the memory size to its usually conservative value. Then, if
the program runs with a variety of input satisfactorily but memory is limited on the
system, try reducing the allocation at the next compilation. If a stack overflow occurs
or an "ibrk()" call returns -1, then try increasing the memory next time. You cannot
damage the system by getting it wrong, but data may be lost if the program runs out
of space at a crucial time. It pays to be in error on the generous side.

14

Chapter 3. C System Calls

This section of the C compiler manual is a guide to the system calls available from C
programs.

It is not intended as a definitive description of OS-9 service requests as these are de-
scribed in the OS-9 System Programmer’s Manual. However, for most calls, enough
information is available here to enable the programmer to write systems calls into
programs without looking further.

The names used for the system calls are chosen so that programs transported from
other machines or operating systems should compile and run with as little modifi-
cation as possible. However, care should be taken as the parameters and returned
values of some calls may not be compatible with those on other systems. Program-
mers that are already familiar with OS-9 names and values should take particular
care. Some calls do not share the same names as the OS-9 assembly language equiv-
alents. The assembly language equivalent call is shown, where there is one, on the
relevant page of the C call description, and a cross-reference list is provided for those
already familiar with OS-9 calls.

The normal error indication on return from a system call is a returned value of -1.
The relevant error will be found in the predefined int "errno". Errno always contains
the error from the last erroneous system call. Definitions for the errors for inclusion
in the programs are in "<errno.h>".

In the "See Also" sections on the following pages, unless otherwise stated, the refer-
ences are to other system calls.

Where "#include" files are shown, it is not mandatory to include them, but it might
be convenient to use the manifest constants defined in them rather than integers; it
certainly makes for more readable programs.

Abort

Name
Abort — stop the program and produce a core dump

Synopsis

abort(void);

Description
This call causes a memory image to be written out to the file "core" in the current
directory, and then the program exits with a status of 1.

15

Chapter 3. C System Calls

Abs

Name
Abs — Absolute value

Synopsis

abs(int i);

Description
ABS returns absolute value of its integer operand.

Caveats
You get what the hardware gives on the largest negative number.

Access

Name
Access — give file accessibility

Synopsis

access(char *fname, int perm);

Description
Access returns 0 if the access modes specified in "perm" are correct for the user to
access "fname". -1 is returned if the file cannot be accessed.

The value for "perm" may be any legal OS-9 mode as used for "open()" or "creat()", it
may be zero, which tests whether the file exists, or the path to it may be searched.

Caveats
NOTE that the "perm" value is not compatible with other systems.

16

Chapter 3. C System Calls

Diagnostics
The appropiate error indication, if a value of -1 is returned, may be found in "errno".

Chain

Name
Chain — load and execute a new program

Synopsis

chain(char *modname, int paramsize, char *paramptr, int type, int lang,
int datasize);

Assembler Equivalent
os9 F$CHAIN

Description
The action of F$CHAIN is described fully in the OS-9 documentation. Chain im-
plements the service request as described with one important exception: chain will
NEVER return to the caller. If there is an error, the process will abort and return to
its parent process. It might be wise, therefore, for the programs to check the exis-
tence and access permissions of the module before calling chain. Permissions may be
checked by using "modlink()" or "modload()" followed by an "munlink()".

"Modname" should point to the name of the desired module. "Paramsize is the length
of the parameter string (which should normally be terminated with a "\n"), and
"paramptr" points to the parameter string. "Type" is the module type as found in
the module header (normally 1: program), and "lang" should match the language
nibble in the module header (C programs have 1 for 6809 machine code here). "Data-
size" may be zero, or it may contain the number of 256 byte pages to give to the new
process as initial allocation of data memory.

Chdir

Name
Chdir, Chxdir — change directory

17

Chapter 3. C System Calls

Synopsis

chdir(char *dirname);
chxdir(char *dirname);

Assembler Equivalent
os9 I$CHGDIR

Description
These calls change the current data directory and the current execution directory,
respectively, for the running task. "Dirname" is a pointer to a string that gives a path-
name for a directory.

Diagnostics
Each call returns 0 after a successful call, or -1 if "dirname" is not a directory path
name, or it is not searchable.

See Also
OS-9 shell commands "chd" and "chx".

Chmod

Name
Chmod — change access permissions of a file

Synopsis

#include <modes.h>
chmod(char *fname, int perm);

Description
Chmod changes the permission bits associated with a file. "Fname" must be a pointer
to a file name, and "perm" should contain the desired bit pattern,

The allowable bit patterns are defined in the include file as follows:

/* permissions */
#define S_IREAD 0x01 /* owner read */
#define S_IWRITE 0x02 /* owner write */

18

Chapter 3. C System Calls

#define S_IEXEC 0x04 /* owner execute */
#define S_IOREAD 0x08 /* public read */
#define S_IOWRITE 0x10 /* public write */
#define S_IOEXEC 0x20 /* public execute */
#define S_ISHARE 0x40 /* sharable */
#define S_IFDIR 0x80 /* directory */

Only the owner or the super user may change the permissions of a file.

Diagnostics
A successful call returns 0. A -1 is returned if the caller is not entitled to change
permissions of "fname" cannot be found.

See Also
OS-9 command "attr"

Chown

Name
Chown — change the ownership of a file

Synopsis

chown(char *fname, int ownerid);

Description
This call is available only to the super user. "Fname" is a pointer to a file name, and
"ownerid" is the new user-id.

Diagnostics
Zero is returned from a successful call. -1 is returned from on error.

Close

Name
Close — close a file

19

Chapter 3. C System Calls

Synopsis

close(int pn);

Assembler Equivalent
os9 I$CLOSE

Description
Close takes a path number, "pn", as returned from system calls "open()", "creat()", or
"dup()", and closes the associated file.

Termination of a task always closes all open files automatically, but it is necessary to
close files where multiple files are opened by the task, and it is desired to re-use path
numbers to avoid going over the system or process path number limit.

See Also
creat(), open(), dup()

Crc

Name
Crc — compute a cyclic redundancy count

Synopsis

crc(char *start, int count, char accum[3]);

Assembler Equivalent
os9 F$CRC

Description
This call accumulates a crc into a three byte array at "accum" for "count" bytes start-
ing at "start". All three bytes of "accum" should be initialized to 0xff before the first
call to "crc()". However, repeated calls can be subsequently made to cover an entire
module. If the result is to be used as an OS-9 module crc, it should have its bytes
complemented before insertion at the end of the module.

20

Chapter 3. C System Calls

Creat

Name
Creat — create a file

Synopsis

#include <modes.h>
creat(char *fname, int perm);

Assembler Equivalent
os9 I$CREATE

Description
Creat returns a path number to a new file available for writing, giving it the permis-
sions specified in "perm" and making the task user the owner. If, however, "fname"
is the name of an existing file, the file is truncated to zero length, and the ownership
and permissions remain unchanged. NOTE, that unlike the OS-9 assembler service
request, creat does not return an error if the file already exists. "Access()" should be
used to establish the existence of a file if it is important that a file should not be over-
written.

It is unnecessary to specify writing permissions in "perm" in order to write to the file
in the current task.

The permissions allowed are defined in the include file as follows:

#define S_IPRM 0xff /* mask for permission bits */
#define S_IREAD 0x01 /* owner read */
#define S_IWRITE 0x02 /* owner write */
#define S_IEXEC 0x04 /* owner execute */
#define S_IOREAD 0x08 /* public read */
#define S_IOWRITE 0x10 /* public write */
#define S_IOEXEC 0x20 /* public execute */
#define S_ISHARE 0x40 /* sharable */

Directories may not be created with this call; use "mknod()" instead.

Diagnostics
This call returns -1 if there are too many files open. If the pathname cannot be
searched, if permission to write is denied, or if the file exists and is a directory.

See Also
write(), close(), chmod()

21

Chapter 3. C System Calls

Defdrive

Name
Defdrive — get default system drive

Synopsis

char *defdrive(void);

Description
A call to defdrive returns a pointer to a string containing the name of the default sys-
tem drive. The method used is to consult the "Init" module for the default directory
name. The name is copied to a static data area and a pointer to it is returned.

Diagnostics
-1 is returned if the "Init" module cannot be linked to.

Dup

Name
Dup — duplicate an open path number

Synopsis

dup(int pn);

Assembler Equivalent
os9 I$DUP

Description
Dup takes the path number, "pn", as returned from "open()" or "creat()" and returns
another path number associated with the same file.

22

Chapter 3. C System Calls

Diagnostics
A -1 is returned is the call fails because there are too many files open or the path
nmber is invalid.

See Also
open(), creat(), close()

Exit

Name
Exit, _Exit — task termination

Synopsis

exit(int status);
_exit(int status);

Assembler Equivalent
os9 F$EXIT

Description
Exit is the normal means of terminating a task. Exit does any cleaning up operations
required before terminating, such as flushing out any file buffers (see Standard i/o),
but _exit does not.

A task finishing normally, that is returning from "main()", is equivalent to a call -
"exit(0)".

The status passed to exit is available to the parent task if it is executing a "wait".

See Also
wait()

Getpid

Name
Getpid — get the task id

23

Chapter 3. C System Calls

Synopsis

getpid(void);

Assembler Equivalent
os9 F$ID

Description
A number unique to the current running task is often useful in creating names for
temporary files. This call returns the task’s system id (as returned to its parent by
"os9fork").

Description
os9fork(), Standard Library function mktemp.

Getstat

Name
Getstat — get file status

Synopsis

#include <sgstat.h>
/* code 0 */
getstat(int code, int filenum, char *buffer);
/* codes 1 and 6 */
getstat(int code, int filenum);
/* code 2 */
getstat(int code, int filenum, long *size);
/* code 5 */
getstat(int code, int filenum, long *pos);

Assembler Equivalent
os9 I$GETSTT

24

Chapter 3. C System Calls

Description
A full description of getstat can be found in the OS-9 System Programmer’s Manual.

"Code" must be the value of one of the standard codes for the getstat service request.
"Filenum" must be the path number of an open file.

The form of the call depends on the value of "code".

Code 0: "Buffer" must be the address of a 32 byte buffer
into which the relevant status packet is copied.
The header file has the definitions of the
various file and device structures for use by the
program.

Code 1: Code 1 only applies to SCF devices and to test
for data available. The return value is zero if
there is data available. -1 is returned if there is
no data.

Code 2: "Size" should be the address of a long integer
into which the current file size is placed. The
return value of the function is -1 on error and 0
on success.

Code 5: "Pos" should be the address of a long integer
into which the current file position is placed.
The return value of the function is -1 on error
and 0 on success.

Code 6: Returns -1 on EOF and error and 0 on success.

NOTE that when one of the previous calls returns -1, then actual error is returned in
errno.

Getuid

Name
Getuid — return user id

Synopsis

getuid(void);

Assembler Equivalent
os9 F$ID

Description
Getuid returns the real user id of the current task (as maintained in the password
file).

25

Chapter 3. C System Calls

Intercept

Name
Intercept — set function for interrupt processing

Synopsis

intercept(int (* func) (int));

Assembler Equivalent
os9 F$ICPT

Description
Intercept instructs OS-9 to pass control to the function "func" when an interrupt (sig-
nal) is received by the current process.

If the interrupt processing function has an argument, it will contain the value of the
signal received. On return from "func", the process resumes at the point in the pro-
gram where it was interrupted by the signal. "Interrupt()" is an alternative to the use
of "signal()" to process interrupts.

As an example, suppose we wish to ensure that a partially completed output file is
deleted if an interrupt is received. The body of the program might include:

char *temp_file = "temp"; /* name of temporary file */
int pn=0; /* path number */
int intrupt(); /* predeclaration */

...

intercept(intrupt); /* route interrupt processing */
pn = creat(temp_file,3); /* make a new file */

...

write(pn,string,count); /* write string to temp file */

...

close(pn);
pn=0;

...

The interrupt routine might be coded:

intrupt(sig);
{

if (pn){ /* only done if pn refers to an open file */
close(pn);
unlink(temp_file); /* delete */

26

Chapter 3. C System Calls

}
exit(sig);
}

Caveats
"Intercept()" and "signal()" are mutually incompatible so that calls to both must not
appear in the same program. The linker guards against this by giving an "entry name
clash - _sigint" error if it is attempted.

See Also
signal()

Kill

Name
Kill — send an interrupt to a task

Synopsis

#include <signal.h>
kill(int tid, int interrupt);

Description
Kill sends the interrupt type "interrupt" to the task with id "tid".

Both tasks, sender and receiver, must have the same user id unless the user is the
super user.

The include file contains definitions of the defined signals as follows:

/* OS-9 signals */
#define SIGKILL 0 /* system abort (cannot be caught or ignored)*/
#define SIGWAKE 1 /* wake up */
#define SIGQUIT 2 /* keyboard abort */
#define SIGINT 3 /* keyboard interrupt */

Other user-defined signals may, of course, be sent.

Diagnostics
Kill returns 0 from a successful call and -1 if the task does not exist, the effective user
ids do not match, or the user is not the system manager.

27

Chapter 3. C System Calls

See Also
signal(), OS-9 shell command "kill"

Lseek

Name
Lseek — position in file

Synopsis

lseek(int pn, long position, int type);

Assembler Equivalent
os9 I$SEEK

Description
The read or write pointer for the open file with the path number, "pn", is positioned
by lseek to the specified place in the file. The "type" indicates from where "position"
is to be measured: if 0, from the beginning of the file, if 1, from the current location,
or if 2, from the end of the file.

Seeking to a location beyond the end of a file open for writing and then writing to
it, creates a "hole" in the file which appears to be filled with zeros from the previous
end to the position sought.

The returned value is the resulting position in the file unless there is an error, so to
find out the current position use

lseek(pn,0l,1);

Caveats
The argument "position" must be a long integer. Constants should be explicitly made
long by appending an "l", as above, and other types should be converted using a cast:

e.g. lseek(pn,(long)pos,1);

Notice also, that the return value from lseek is itself a long integer.

28

Chapter 3. C System Calls

Diagnostics
-1 is returned if "pn" is a bad path number, or attempting to seek to a position before
the beginning of a file.

See Also
creat(), open(), Standard Library function "fseek"

Mknod

Name
Mknod — create a directory

Synopsis

#include <modes.h>
mknod(char *fname, int desc);

Assembler Equivalent
os9 I$MAKDIR

Description
This call may be used to create a new directory. "Fname" should point to a string
containing the desired name of the directory. "Desc" is a descriptor specifying the
desired mode (file type) and permissions of the new file.

The include file defines the possible values for "desc" as follows:

#define S_IREAD 0x01 /* owner read */
#define S_IWRITE 0x02 /* owner write */
#define S_IEXEC 0x04 /* owner execute */
#define S_IOREAD 0x08 /* public read */
#define S_IOWRITE 0x10 /* public write */
#define S_IOEXEC 0x20 /* public execute */
#define S_ISHARE 0x40 /* sharable */

Diagnostics
Zero is returned if the directory has been successfully made; -1 if the file already
exists.

29

Chapter 3. C System Calls

See Also
OS-9 command "makdir"

Modload

Name
Modload — return a pointer to a module structure

Synopsis

#include <module.h>
mod_exec *modlink(char *modname, int type, int language);
mod_exec *modload(char *modname, int type, int language);

Assembler Equivalent
os9 F$LINK

os9 F$LOAD

Description
Each of these calls return a pointer to an OS-9 memory module.

Modlink will search the module directory for a module with the same name as "mod-
name" and, if found, increment its link count.

Modload will open the file which has the path list specified by "filename" and loads
modules from the file adding them to the module directory. The returned value is a
pointer to the first module loaded.

Above, each is shown as returning a pointer to an executable module, but it will
return a pointer to whatever type of module is found.

Diagnostics
-1 is returned on error.

See Also
munlink()

30

Chapter 3. C System Calls

Munlink

Name
Munlink — unlink a module

Synopsis

#include <module.h>
munlink(mod_exec *mod);

Assembler Equivalent
os9 F$UNLINK

Description
This call informs the system that the module pointed to by "mod" is no longer re-
quired by the current process. Its link count is decremented, and the module is re-
moved from the module directory if the link count reaches zero.

See Also
modlink(), modload()

_os9

Name
_os9 — system call interface from C programs

Synopsis

#include <os9.h>
_os9(char code, struct registers *reg);

Description
_os9 enables a programmer to access virtually any OS-9 system call directly from a C
program without having to resort to assembly language routines.

Code is one of the codes that are defines in os9.h. os9.h contains codes for the F$ and
I$ function/service requests, and it also contains getstt, setstt, and error codes.

31

Chapter 3. C System Calls

The input registers(reg) for the system calls are accessed by the following structure
that is defined in os9.h:

struct registers {
char rg_cc,rg_a,rg_b,rg_dp;
unsigned rg_x,rg_y,rg_u;

};

An example program that uses _os9 is presented on the following page.

Diagnostics
-1 is returned is the OS-9 call failed. 0 is returned on success.

Program Example

#include <os9.h>
#include <modes.h>

/* this program does an I$GETSTT call to get file size */
main(argc,argv)
int argc;
char **argv;
{

struct registers reg;
int path;

/* tell linker we need longs */
pflinit();

/* low level open(file name is first command line param */
path=open(*++argv,S_IREAD);

/* set up regs for call to OS-9 */
reg.rg_a=path;
reg.rg_b=SS_SIZE;

if(_os9(I_GETSTT,®) == 0)
printf("filesize = %lx\n", /* success */
(long) (reg.rg_x << 16)+reg.rg_u);

else printf("OS9 error #%d\n",reg.rg_b & 0xff); /*failed*/

dumpregs(®); /* take a look at the registers */
}

dumpregs(r)
register struct registers *r;
{

printf("cc=%02x\n",r->rg_cc & 0xff);
printf(" a=%02x\n",r->rg_a & 0xff);
printf(" b=%02x\n",r->rg_b & 0xff);
printf("dp=%02x\n",r->rg_dp & 0xff);
printf(" x=%02x\n",r->rg_x);
printf(" y=%02x\n",r->rg_u);
printf(" u=%02x\n",r->rg_y);

}

32

Chapter 3. C System Calls

Open

Name
Open — open a file for read/write access

Synopsis

open(char *fname, int mode);

Assembler Equivalent
os9 I$OPEN

Description
This call opens an existing file for reading if "mode" is 1, writing if "mode" is 2, or
reading and writing if "mode" is 3. NOTE that these values are OS-9 specific and not
compatible with other systems. "Fname" should point to a string representing the
pathname of the file.

Open returns an integer as "path number" which should be used by i/o system calls
referring to the file.

The position where reads or writes start is at the beginning of the file.

Diagnostics
-1 is returned if the file does not exist, if the pathname cannot be searched, if too many
files are already open, or if the file permissions deny the requested mode.

See Also
creat(), read(), write(), dup(), close()

Os9fork

Name
Os9fork — create a process

Synopsis

os9fork(char *modname, int paramsize, char *paramptr, int type, int
lang, int datasize);

33

Chapter 3. C System Calls

Assembler Equivalent
os9 F$FORK

Description
The action of F$FORK is desribed fully in the OS-9 System Programmer’s Manual.
Os9fork will create a process that will run concurrently with the calling process.
When the forked process terminates, it will return to the calling process.

"Modname" should point to the name of the desired module. "Paramsize" is the
length of the parameter string which should normally be terminated with a ’\n’,
and "paramptr" points to the parameter string. "Type" is the module type as found
in the header(normally 1: program), and "lang" should match the language nibble in
the module header (C programs have 1 for 6809 machine code here). "Datasize" may
be zero, or it may contain the number of 256 byte pages to give to the new process as
initial allocation of memory.

Diagnostics
-1 will be returned on error, or the ID number of the child process will be returned on
success.

Pause

Name
Pause — halt and wait for interrupt

Synopsis

pause(void);

Assembler Equivalent
os9 I$SLEEP (with a value of 0)

Description
Pause may be used to halt a task until an interrupt is received from "kill".

Pause always returns -1.

34

Chapter 3. C System Calls

See Also
kill(), signal(), OS-9 shell command "kill"

Prerr

Name
Prerr — print error message

Synopsis

prerr(int filnum, int errcode);

Assembler Equivalent
os9 F$PERR

Description
PRERR prints an error message on the output path as specified by "filnum" which
must be the path number of an open file. The message depends on "errcode" which
will normally be a standard OS-9 error code.

Read

Name
Read, Readln — read from a file

Synopsis

read(int pn, char *buffer, int count);
readln(int pn, char *buffer, int count);

Assembler Equivalent
os9 I$READ

os9 I$READLN

35

Chapter 3. C System Calls

Description
The path number, "pn" is an integer which is one of the standard path numbers 0, 1,
or 2, or the path number should have been returned by a successful call to "open",
"creat", or "dup". "Buffer" is a pointer to space with at least "count" bytes of memory
into which read will put the data from the file.

It is guaranteed that at most "count" bytes will be read, but often less will be, either
because, for readln, the file represents a terminal and input stops at the end of a line,
or for both, end-of-file has been reached.

Readln causes "line-editing" such as echoin to take place and returns once the first
"\n" is encountered in the input or the number of bytes requested has been read.
Readln is the preferred call for reading from the user’s terminal.

Read does not cause any such editing. See the OS-9 manual for a fuller description of
the actions of these calls.

Diagnostics
Read and readln return the number of bytes actually read (0 at end-of-file) or -1 for
physical i/o errors, a bad path number, or a ridicolous "count".

NOTE that end-of-file is not considered an error, and no error indication is returned.
Zero is returned on EOF.

See Also
open(), creat(), dup()

Sbrk

Name
Sbrk, Ibrk — request additional working memory

Synopsis

char *sbrk(int increase);
char *ibrk(int increase);

Description
Sbrk requests an allocation from free memory and returns a pointer to its base.

"Sbrk()" requests the system to allocate "new" memory from outside the initial allo-
cation.

Users should read the Memory Management section of this manual for a fuller ex-
planation of the arrangement.

Ibrk requests memory from inside the initial memory allocation.

36

Chapter 3. C System Calls

Diagnostics
Sbrk and ibrk return -1 if the requested amount of contiguous memory is unavailable.

Setpr

Name
Setpr — set process priority

Synopsis

setpr(int pid, int priority);

Assembler Equivalent
os9 F$SPRIOR

Description
SETPR sets the process identified by "pid" (process id) to have a priority of "priority".
The lowest level is 0 and the highest is 255.

Diagnostics
The call will return -1 if the process does not have the same user id as the caller.

Setime

Name
Setime, Getime — set and get system time

Synopsis

#include <time.h>
setime(struct sgtbuf *buffer);
getime(struct sgtbuf *buffer);

37

Chapter 3. C System Calls

Assembler Equivalent
os9 F$STIME

os9 F$GTIME

Description
GETIME returns system time in buffer. SETIME sets system time from buffer.

Setuid

Name
Setuid — set user id

Synopsis

setuid(int uid);

Assembler Equivalent
os9 F$SUSER

Description
This call may be used to set the user id for the current task. Setuid only works if the
caller is the super user (user id 0).

Diagnostics
Zero is returned from a successful call, and -1 is returned on error.

See Also
getuid()

Setstat

Name
Setstat — set file status

38

Chapter 3. C System Calls

Synopsis

#include <sgstat.h>
/* code 0 */
setstat(int code, int filenum, char *buffer);
/* code 2 */
setstat(int code, int filenum, long size);

Assembler Equivalent
os9 F$SETSTT

Description
For a detailed explanation of this call, see the OS-9 System Programmer’s Manual.

"Filenum" must be the path number of a currently open file. The only values for code
at this time are 0 and 2. When "code" is 0, "buffer" should be the address of a 32 byte
structure which is written to the option section of the path descriptor of the file. The
header file contains definitions of various structures maintained by OS-9 for use by
the programmer. When code is 2, "size" should be a long integer specifying the new
file size.

Signal

Name
Signal — catch or ignore interrupts

Synopsis

#include <signal.h>

typedef int (*sighandler_t)(int);
sighandler_t signal(int interrupt, sighandler_t address);

Description
This call is a comprehensive method of catching or ignoring signals sent to the cur-
rent process. Notice that "kill()" does the sending of signals, and "signal()" does the
catching.

Normally, a signal sent to a process causes it to terminate with the status of the signal.
If, in advance of the anticipated signal, this system call is used, the program has
the choice of ignoring the signal or designating a function to be executed when it is
received. Different functions may be designated for different signals.

The values for "address" have the following meanings:

39

Chapter 3. C System Calls

0 reset to the default i.e. abort when received.

1 ignore; this will apply until reset to another
value.

Otherwise taken to be the address of a C function which is
to be executed on receipt of the signal.

If the latter case is chosen, when the signal is received by the process the "address" is
reset to 0, the default, before the function is executed. This means that if the next sig-
nal received should be caught then another call to "signal()" should be made immedi-
ately. This is normally the first action taken by the "interrupt" function. The function
may access the signal number which caused its execution by looking at its argument.
On completion of this function the program resumes at the point at which is was
"interrupted" by the signal.

An example should help to clarify all this. Suppose a program needs to create a tem-
porary file which should be deleted before exiting. The body of the program might
contain fragments like this:

pn = creat("temp",3); /* create a temporary file */
signal(2,intrupt); /* ensure tidying up */
signal(3,intrupt);
write(pn,string,count);
close(pn); /* finished writing */
unlink("temp"); /* delete it */
exit(0); /* normal exit */

The call to "signal()" will ensure that if a keyboard or quit signal is received then the
function "intrupt()" will be executed and this might be written:

intrupt(sig)
{
close(pn); /* close it if open */
unlink("temp"); /* delete it */
exit(sig); /* received signal er exit status */
}

In this case, as the function will be exiting before another signal is received, it is
unnecessary to call "signal()" again to reset its pointer. Note that either the function
"intrupt()" should appear in the source code before the call to "signal()", or it should
be pre-declared.

The signals used by OS-9 are defined in the header file as follows:

/* OS-9 signals */
#define SIGKILL 0 /* system abort (cannot be caught or ignored)*/
#define SIGWAKE 1 /* wake up */
#define SIGQUIT 2 /* keyboard abort */
#define SIGINT 3 /* keyboard interrupt */

/* special addresses */
#define SIG_DFL 0 /* reset to default */
#define SIG_IGN 1 /* ignore */

Please note that there is another method of trapping signals, namely "intercept()"
(q.v.). However, since "signal()" and "intercept()" are mutually incompatible, calls to
both of them must not appear in the same program. The link-loader will preven the
creation of an executable program in which both are called by aborting with an "entry
name clash" error for "_sigint".

40

Chapter 3. C System Calls

See Also
intercept(), OS-9 shell command "kill", kill()

Stacksize

Name
Stacksize, Freemem — obtain stack reservation size

Synopsis

stacksize(void);
freemem(void);

Description
For a description of the meaning and use of this call, the user is referred to the Mem-
ory Management section of this manual.

If the stack check code is in effect, a call to stacksize will return the maximum number
of bytes of stack used at the time of the call. This call can be used to determine the
stack size required by a program.

Freemem() will return the number of bytes of the stack that has not been used.

See Also
ibrk(), sbrk(), Global variable "memend" and value "end".

Strass

Name
Strass — byte by byte copy

Synopsis

_strass(char *s1, char *s2, int count);

41

Chapter 3. C System Calls

Description
Until such time as the compiler can deal with structure assignment, this function is
useful for copying one structure to another.

"Count" bytes are copied from memory location at "s2" to memory as "s1" regardless
of the contents.

Tsleep

Name
Tsleep — put process to sleep

Synopsis

tsleep(int ticks);

Assembler Equivalent
os9 F$SLEEP

Description
Tsleep deactivates the calling process for a specified number of system "ticks" or in-
definitely if "ticks" is zero. A tick is system dependent but is usually 100ms.

For a fuller description of this call, see the OS-9 System Programmer’s Manual.

Unlink

Name
Unlink — remove directory entry

Synopsis

unlink(char *fname);

42

Chapter 3. C System Calls

Assembler Equivalent
os9 I$DELETE

Description
Unlink deletes the directory entry whose name is pointed to by "fname". If the entry
was the last link to the file, the file itself is deleted and the disc space occupied made
available for re-use. If, however the file is open, in any active task, the deletion of the
actual file is delayed until the file is closed.

Diagnostics
Zero is returned from a successful call, -1 if the file does not exist, if its directory is
write-protected, or cannot be searched, if the file is a non-empty directory or a device.

See Also
OS-9 command "kill"

Wait

Name
Wait — wait for task termination

Synopsis

wait(int *status);
wait(0);

Assembler Equivalent
os9 F$WAIT

Description
Wait is used to halt the current task until a child task has terminated.

The call returns the task id of the terminating task and places the status of that task
in the integer pointed to by "status" unless "status" is 0. A wait must be executed for
each child task spawned.

The status will contain the argument of the "exit" or "_exit" call in the child task of the
signal number if it was interrupted. A normally terminating C program with no call
to "exit" or "_exit" has an implied call of "exit(0)".

43

Chapter 3. C System Calls

Caveats
NOTE that the status is the OS-9 status code and is not compatible with codes on
other systems.

Diagnostics
-1 is returned if there is no child to be waited for.

See Also
os9fork(), signal(), exit(),_exit()

Write

Name
Write, Writeln — write to a file or device

Synopsis

write(int pn, char *buffer, int count);
writeln(int pn, char *buffer, int count);

Assembler Equivalent
os9 I$WRITE

os9 I$WRITLN

Description
"Pn" must be a value returned by "open", "creat" or "dup" or should be a 0(stdin),
1(stdout), or 2(stderr).

"Buffer should point to an area of memory from which "count" bytes are to be written.
Write returns the actual number of bytes written, and if this is different from "count",
an error has occurred.

Writes in multiples of 256 bytes to file offset boundaries of 256 bytes are the most
efficient.

Write causes no "line-editing" to occur on output. Writeln causes line-editing and only
writes up to the first "\n" in the buffer if this is found before "count" is exhausted.
For a full description of the actions of these calls the reader is referred to the OS-9
documentation.

44

Chapter 3. C System Calls

Diagnostics
-1 is returned if "pn" is a bad path number, of "count" is ridiculous or on physical i/o
error.

See Also
creat(), open()

45

Chapter 4. C Standard Library

The Standard Library contains functions which fall into two classes: high-level I/O
and convenience.

The high-level I/O functions provide facilities that are normally considered part of
the definition of other languages; for example, the FORMAT "statement" of Fortran.
In addition, automatic buffering of I/O channels improves the speed of file access
because fewer system calls are necessary.

The high-level I/O functions should not be confused with the low-level system calls
with similar names. Nor shoul "file pointers" be confused with "path numbers". The
standard library functions maintain a structure for each file open that holds status
information and a pointer into the files buffer, A user program uses a pointer to this
structure as the "identity" of the file (which is provided by "fopen()"), and passes it
to the various I/O functions. The I/O functions will make the low-level system calls
when necessary.

Using a file pointer in a systen call, or a path number in a Standard Library call, is a common
mistake among beginners to C and, if made, will be sure to crash your program.

The convenience functions include facilities for copying, comparing, and concatening
strings, converting numbers to strings, and doing the extra work in accessing systen
information such as the time.

In the page which follow, the functions available are described in terms of what they
do and the parameters they expect. The "USAGE" section shows the name of the
function and the type returned (if not int). The declaration of arguments are shown
as they would be written in the function definition to indicate the types expected by
the function. If it is necesary to include a file before the function can be used, it is
shown in the "USAGE" section by "#include <filename>".

Most of the header files that are required to be included, must reside in the "DEFS"
directory on the default system drive. If the file is included in the source program
using angle bracket delimiters instead of the usual double quotes, the compiler will
append this path name to the file name. For example, "#include <stdio.h>" is equiva-
lent to "#include </d0/defs/stdio.h>", if "/d0" is the path name of the default system
drive.

Please note that if the type of the valye returned by a function is not INT, you should
make a pre-declaration in your program before calling it. For example, if you wish
to use "atof()", you should pre-declare by having "double atof();" somewhere in your
program before a call to it. Some functions which have associated header files in the
DEFS directory that should be included, will be pre-declared for you in the header.
An example of this is "ftell()" which is pre-declared in "stdio.h". If you are in any
doubt, read the header file.

Atof

Name
Atof, Atoi, Atol — ASCII to number conversions

Synopsis

double atof(char *ptr);
long atol(char *ptr);
int atoi(char *ptr);

46

Chapter 4. C Standard Library

Description
Conversions of the string pointed to by "ptr" to the relevant number type are carried
out by these functions. They cease to convert a number when the first unrecognized
character is encountered.

Each skips leading spaces and tab characters. Atof() recognizes an optional sign fol-
lowed by a digit string that could possibly contain a decimal point, then an optional
"e" or "E", and optional sign and a digit string. Atol() and atoi() recognize an optional
sign and a digit string.

Caveats
Overflow causes unpredictable results. There are no error indications.

Fclose

Name
Fclose, Fflush — flush or close a file

Synopsis

#include <stdio.h>
fclose(FILE *fp);
fflush(FILE *fp);

Description
Fflush causes a buffer associated with the file pointer "fp" to be cleared by writing out
to the file; of course, only if the file was opened for write or update. It is not normally
ncesasary to call fflush, but it can be useful when, for example, normal output is to
"stdout", and it is wished to send something to "stderr" which is unbuffered. If fflush
were not used and "stdout" referred to the terminal, the "stderr" message will appear
before large chunks of the "stdout" message even though the latter was written first.

Fclose call fflush to clear out the buffer associated with "fp", closes the file, and frees
the buffer for use by another fopen call.

The exit() system call and normal termination of a program causes fclose to be called
for each open file.

See Also
System call close(), fopen(), setbuf().

47

Chapter 4. C Standard Library

Diagnostics
EOF is returned if "fp" does not refer to an output file or there is an error writing to
the file.

Feof

Name
Feof, Ferror, Clearerr, Fileno — return status information of files

Synopsis

#include <stdio.h>
feof(FILE *fp);
ferror(FILE *fp);
clearerr(FILE *fp);
fileno(FILE *fp);

Description
Feof returns non-zero if the file associated with "fp" has reached its end. Zero is re-
turned on error.

Ferror returns non-zero if an error condition occurs on access to the file "fp"; zero is
returned otherwise. The error condition persists, preventing further access to the file
by other Standard Library functions, until the file is closed, or it is cleared by clearerr.

Clearerr resets the error condition on the file "fp". This does NOT "fix" the file or
prevent the error from occurring again; it merely allows Standard Library functions
at least to try.

Caveats
These functions are actually macros that are defined in "<stdio.h>" so their names
cannot be redeclared.

See Also
System call open(), fopen().

Findstr

Name
Findstr, Findnstr — string search

48

Chapter 4. C Standard Library

Synopsis

findstr(int pos, char *string, char *pattern);
findnstr(int pos, char *string, char *pattern, int size);

Description
These functions search the string pointed to by "string" for the first instance of the
pattern pointed to by "pattern" starting at position "pos" (where the first position is 1
not 0). The returned value is the position of the first matched character of the pattern
in the string or zero if a match is not found.

Findstr stops searching the string when a null byte is found in "string".

Findnstr only stops searching at position "pos" + "len" so it may continue past null
bytes.

Caveats
The current implementation does not use the most efficient algorithm for pattern
matching so that use on very long strings is likely to be somewhat slower than it
might be.

See Also
index(), rindex()

Fopen

Name
Fopen — open a file and return a file pointer

Synopsis

#include <stdio.h>
FILE *fopen(char *filename, char *action);
FILE *freopen(char *filename, char *action, FILE *streak);
FILE *fdopen(FILE *filedes, char *action);

Description
Fopen returns a pointer to a file structure (file pointer) if the file name in the string
pointed to by "filename" can be validly opened with the action in the string pointed
to by "action".

The valid actions are:

49

Chapter 4. C Standard Library

“r” open for reading

“w” create for writing

“a” append(write) at end of file, or create for
writing

“r+” open for update

“w+” create for update

“a+” create or open for update at end of file

“d” directory read

Any action may have an “x” after the initial letter which indicates to “fopen()” that
it should look in the current execution directory if a full path is not given, and the x
also specifies that the file should have execute permission.

E.g. f = fopen(“fred”,“wx”);

Opening for write will perform a “creat()”. If a file with the same name exists when
the file is opened for write, it will be truncated to zero length. Append means open
for write and position to the end of the file. Writes to the file via “putc()” etc. will
extend the file. Only if the file does not already exist will it be created.

NOTE that the type of a file structure is pre-defined in “stdio.h” as FILE, so that a
user program may decale or define a file pointer by, for example, FILE *f;

Three file pointers are available and can be considered open the moment the program
runs:

stdin the standard input - equivalent to path number 0

stdout the standard output - equivalent to path number 1

stderr the standard error output - equivalent to path number
2

All files are automatically buffered except stderr, unless a file is made unbuffered by
a call to setbuf() (q.v.).

Freopen is usually used to attach stdin, stdout, and stderr to specified files. Freopen
substitutes the file passed to it instead of the open stream. The original stream is
closed. NOTE that the original stream will be closed even if the open does not suc-
ceed.

Fdopen associates a stream with a file descriptor. The streams type(r,w,a) must be the
same as the mode of the open file.

Caveats
The “action” passed as an argument to fopen must be a pointer to a string, not a
character. For example

fp = fopen(“fred”,“r”); is correct but
fp = fopen(“fred”,’r’); is not.

50

Chapter 4. C Standard Library

Diagnostics
Fopen returns NULL (0) if the call was unsuccessful.

See Also
System call open(), fclose()

Fread

Name
Fread, Fwrite — read/write binary data

Synopsis

#include <stdio.h>
fread(char *ptr, int size, int number, FILE *fp);
fwrite(char *ptr, int size, int number, FILE *fp);

Description
Fread reads from the file pointed to by "fp". "Number" is the number of items of size
"size" that are to be read starting at "ptr". The best way to pass the argument "size" to
fread is by using "sizeof". Fread returns the number of items actually read.

Fwrite writes to the file pointed to by "fp". "Number" is the number of items of size
"size" reading the from memory starting at "ptr".

Diagnostics
Both functions return 0 (NULL) at the end of file or error.

See Also
System calls read(), write(). Fopen(), getc(), putc(), printf().

51

Chapter 4. C Standard Library

Fseek

Name
Fseek, Rewind, Ftell — position in a file or report current position

Synopsis

#include <stdio.h>
fseek(FILE *fp, long offset, int place);
rewind(FILE *fp);
long ftell(FILE *fp);

Description
Fseek repositions the next character position of a file for either read or write. The new
position is a "offset" bytes from the beginning of the file if "place" is 0, the current
position is 1, or the end if 2. Fseek sorts out the special problems of buffering.

NOTE that using "lseek()" on a buffered file will produce unpredictable results.

Rewind is equivalent to "fseek(fp,0L,0)".

Ftell returns the current position, measured in bytes, from the beginning of the file
pointed to by "fp".

Diagnostics
Fseek returns -1 if the call is invalid.

See Also
System call lseek().

Getc

Name
Getc, Getchar, Getw — return next character to be read from a file

Synopsis

#include <stdio.h>
int getc(FILE *fp);
int getchar(void);
int getw(FILE *fp);

52

Chapter 4. C Standard Library

Description
Getc returns the next character from the file pointed to by "fp".

Getchar is equivalent to "getc(stdin)".

Getw returns the next two bytes from the file as an integer.

Under OS-9 there is a choice of service requests to use when reading from a file.
"Read()" will get characters up to a specified number in "raw" mode i.e. no editing
will take place on the input stream and the characters will appear to the program
exactly as in the file. "Readln()", on the other hand, will honor the various mappings
of characters associated with a Serial Character device such as a terminal and in any
case will return to the caller as soon as a carriage return is seen on the input.

In the vast majority of cases, it is preferable to use "readln()" for accessing Serial
Character devices and "read()" for any other file input. "Getc()" uses this strategy
and, as all file input using the Standard Library functions is routed through "getc()",
so do all the other input functions. The choice is made when the first call to "getc()"
is made after the file has been opened. The system is consulted for the status of the
file and a flag bit is set in the file structure accordingly. The choice may be forced by
the programmer by setting the relevant bit before a call to "getc()". The flag bits are
defined in "<stdio.h>" and "_SCF" and "_RBF" and the method is as follows: assuming
that the file pointer for the file, as returned by "fopen()" is f,

f->_flag |= _SCF;

will force the use of "readln()" on input and

f->_flag |= _RBF;

will force the use of "read()". This trick may be played on the standard streams "stdin",
"stdout" and "stderr" without the need for calling "fopen()" but before any input is
requested from the stream.

Diagnostics
EOF(-1) is returned for end of file or error.

See Also
Putc(), fread(), fopen(), gets(), ungetc()

Gets

Name
Gets, Fgets — input a string

Synopsis

#include <stdio.h>
char *gets(char *s);
char *fgets(char *s, int n, FILE *fp);

53

Chapter 4. C Standard Library

Description
Fgets reads characters from the file "fp" and places them in the buffer pointed to by
"s" up to a carriage return (’\n’) but not more than "n" - 1 characters. A null character
is appended to the end of the string.

Gets is similar to fgets, but gets is applied to "stdin" and no maximum is stipulated
and ’\n’ is replaced by a null.

Both functions return their first arguments.

Caveats
The different treatment of the "\n" by these functions is retained here for portability
reasons.

Diagnostics
Both functions return NULL on end-of-file or error.

See Also
puts(), getc(), scanf(), fread()

Isalpha

Name
Isalpha, Isupper, Islower, Isdigit, Isalnum, Isspace, Ispunct,
Isprint, Iscntrl, Isascii — character classification

Synopsis

#include <ctype.h>
isalpha(int c);

Description
These functions use table look-up to classify characters according to their ascii value.
The header file defines them as macros which means that they are implemented as
fast, inline code rather than subroutines.

Each results in non-zero for true or zero for false.

The correct value is guaranteed for all integer values in isascii, but the result is un-
predictable in the others if the argument is outside the range -1 to 127.

The truth tested by each function is a follows:
54

Chapter 4. C Standard Library

isalpha c is a letter

isdigit c is a digit

isupper c is an upper case letter

islower c is a lower case letter

isalnum c is a letter or a digit

isspace c is a space, tab character, newline, carriage
return or formfeed

iscntrl c is a control character (0 to 32) or DEL (127)

ispunct c is neither countrol nor alpha-numeric

isprint c is printable (32 to 126)

isascii c is in the range -1 to 127

L3tol

Name
L3tol, Ltol3 — convert between long integers and 3-byte integers

Synopsis

l3tol(long *lp, char *cp, int n);
ltol3(char *cp, long *lp, int n);

Description
Certain system values, such as disc addresses, are maintained in three-byte form
rather than four-byte; these functions enable arithmetic to be used on them.

L3tol converts a vector on "n" three-byte integers pointed to by "cp", into a vector of
long integers starting at "lp".

Ltol3 does the opposite.

Longjmp

Name
Longjmp, Setjmp — jump to another function

55

Chapter 4. C Standard Library

Synopsis

#include <setjmp.h>
setjmp(jmp_buf env);
longjmp(jmp_buf env, int val);

Description
These functions allow the return of program control directly to a higher level func-
tion. They are most useful when dealing with errors and interrupts encountered in a
low level routine.

"Goto" in C has scope only in the function in which it is used; i.e. the label which is
the object of a "goto" may only be in the same function. Control can only be trans-
ferred elsewhere by means of the function call, which, of course returns to the caller.
In certain abnormal situations a programmer would prefer to be able to start some
section of code again, but this would mean returning up a ladder of function calls
with error indications all the way.

Setjmp is used to "mark" a point in the program where a subsequent longjmp can
reach. It places in the buffer, defined in the header file, enough information for
longjmp to restore the environment to that existing at the relevant call to setjmp.

Longjmp is called with the environment buffer as an argument and also, a value
which can be used by the caller of setjmp as, perhaps, an error status.

To set the system up, a function will call setjmp to set up the buffer, and if the returned
value is zero, the program will know that the call was the "first time through". If,
however, the returned value is non-zero, it must be a longjmp returning from some
deeper level of the program.

NOTE that the function calling setjmp must not have returned at the time of calling
longjmp, and the environment buffer must be declared globally.

Malloc

Name
Malloc, Free, Calloc — memory allocation

Synopsis

char *malloc(unsigned size);
free(char *ptr);
char *calloc(unsignednel, unsignedelsize);

Description
Malloc returns a pointer to a block of at least "size" free bytes.

56

Chapter 4. C Standard Library

Free requires a pointer to a block that has been allocated by malloc; it frees the space
to be allocated again.

Calloc allocates space for an array. Nel is the number of elements in the arrary, and
elsize is the size of each element. Calloc initializes the space to zero.

Diagnostics
Malloc, free, and calloc return NULL(0) if no free memory can be found or if there
was an error.

Mktemp

Name
Mktemp — create unique temporary file name

Synopsis

char *mktemp(char *name);

Description
Mktemp may be used to ensure that the name of a temporary file is unique in the
system and does not clash with any other file name.

"Name" must point to a string whose last five characters are "X"; the Xs will be re-
placed with the ascii representation of the task id.

For example, if "name" points to "foo.XXXXX", and the task id is 351, the returned
value points at the same place, but it now holds "foo.351".

See Also
System call getpid()

Printf

Name
Printf, Fprintf, Sprintf — formatted output

57

Chapter 4. C Standard Library

Synopsis

#include <stdio.h>
printf(char *control, ...);
fprintf(FILE *fp, char *control, ...);
sprintf(char *string, char *control, ...);

Description
Thse three functions are used to place numbers and strings on the output in format-
ted, human readable form.

Fprintf places its output on the file "fp", printf on the standard output, and sprintf in
the buffer pointed to by "string". NOTE that it is the user’s responsibility to ensure
that this buffer is large enough.

The "control" string determines the format, type, and number of the following argu-
ments expected by the function. If the control does not match the arguments correctly,
the results are unpredictable.

The control may contain characters to be copied directly to the output and/or format
specifications. Each format specification causes the function to take the next succes-
sive argument for output.

A format specification consists of a "%" character followed by (in this order):

• An optional minus sign ("-") that means left justification in the field.
• An optional string of digits indication the field width required. The field will be

at least this wide and may be wider if the conversion requires it. The field will be
padded on the left unless the above minus sign is present, in which case it will be
padded on the right. The padding character is, by default, a space, but if the digit
string starts with a zero ("0"), it will be "0".

• An optional dot (".") and a digit string, the precision, which for floating point ar-
guments indicates the number of digits to follow the decimal point on conversion,
and for strings, the maximum number of characters from the string argument are
to be printed.

• An optional character "l" indicates that the following "d","x", or "o" is the speci-
fication of a long integer argument. NOTE that in order for the printing of long
integers to take place, the source code must have in it somewhere the statement
pflinit(), which causes routines to be linked from the library.

• A conversion character which shows the type of the argument and the desired
conversion. The recognized conversion characters are:

d,o,x,X The argument is an integer and the conversion
is to decimal, octal, or hexadecimal,
respectively. "X" prints hex and alpha in upper
case.

u The argument is an integer and the conversion
is to an unsigned decimal in the range 0 to
65535.

f The argument is a double, and the form of the
conversion is "[-]nnn.nnn". Where the digits
after the decimal point are specified as above. If
not specified, the precision defaults to six
digits. If the precision is 0, no decimal point or
following digits are printed.

58

Chapter 4. C Standard Library

e,E The argument is a double and the form of the
conversion is "[-]n.nnne(+or-)nn"; one digit
before the decimal point, and the precision
controls the number following. "E" prints the
"e" in upper case.

g,G The argument is a double, and either the "f"
format or the "e" format is chosen, whichever is
the shortest. If the "G" format is used, the "e" is
printed in upper case.

NOTE in each of the above double conversions, the last digit is rounded.

ALSO NOTE that in order for the printing of floats or doubles to take place, the
source program must have the statement pffinit() somewhere.

c The argument as a character.

s The argument is a pointer to a string.
Characters from the string are printed up to a
null character, or untill the number of
characters indicated by the precision have been
printed. If the precision is 0 or missing, the
characters are not counted.

% No argument corresponding; "%" is printed.

See Also
Kernighan & Ritchie pages 145-147. putc(), scanf()

Putc

Name
Putc, Putchar, Putw — put character or word in a file

Synopsis

#include <stdio.h>
putc(char ch, FILE *fp);
putchar(char ch);
putw(int n, FILE *fp);

Description
Putc add the character "ch" to the file "fp" at the current writing position and advances
the position pointer.

59

Chapter 4. C Standard Library

Putchar is implemented as a macro (defined in the header file) and is equivalent to
"putc(ch,stdout)".

Putw adds the (two byte) machine word "n" to the file "fp" in the manner of putc.

Output via putc is normally buffered except; (a) when the buffering is disabled by
"setbuf()", and (b) the standard error output is always unbuffered.

Diagnostics
Putc and putchar return the character argument from a successful call, and EOF on
end-of-file or error.

See Also
fopen(), fclose(), fflush(), getc(), puts(), printf(), fread()

Puts

Name
Puts, Fputs — put a string on a file

Synopsis

#include <stdio.h>
puts(char *s);
fputs(char *s, FILE *fp);

Description
Fputs copies the (null-terminated) string pointed to by "s" onto the file "fp".

Puts copies the string "s" onto the standard output and appends "\n".

The terminating null is not copied by either function.

Caveats
The inconsistency of the new-line being appended by puts and not by fputs is dic-
tated by history and the desire for compatibility.

60

Chapter 4. C Standard Library

Qsort

Name
Qsort — quick sort

Synopsis

qsort(char *base, int n, int size, int (* compfunc) (void *, void *));

Description
Qsort implements the quick-sort algoritm for sortig an arbitrary array of items.

"Base" is the address of the array of "n" items of size "size". "Compfunc" is a pointer to
a comparison routine supplied by the user. It will be called by qsort with two pointers
to items in the array for comparison and should return an integer which is less than,
equal to, or greater than 0 where, respectively, the first item is less than, equal to, or
greater than the second.

Scanf

Name
Scanf, Fscanf, Sscanf — input string interpretation

Synopsis

#include <stdio.h>
fscanf(FILE *fp, char *control, char *pointer...);
scanf(char *control, char *pointer...);
sscanf(char *string, char *control, char *pointer...);

Description
These functions perform the complement to "printf()" etc.

Fscanf performs conversions from the file "fp", scanf from the standard input, and
sscanf from the string pointed to by "string".

Each function expects a control string containing conversion specifications, and zero
or more pointers to objects into which the converted values are stored.

The control string may contain three types of fields:

a. Space, tab characters, or "\n" which match any of the three in the input.

61

Chapter 4. C Standard Library

b. Characters not among the above and not "%" which must match characters in
the input.

c. A "%" followed by an optional "*" indicates suppression of assignment, an op-
tional field width maximum and a conversion character indicating the type
expected.

A conversion character controls the conversion to be applied to the next field and
indicates the type of the corresponding pointer argument. A field consists of consec-
utive non-space characters and ends at either a character inappropiate for the conver-
sion or when a specified field is exhausted. When one field is finished, white-space
characters are passed over until the next field is found.

d A decimal string is to be converted to an integer.

o An octal string; the coresponding argument should
point to an integer.

x A hexadecimal string for conversion to an integer.

s A string of non-space characters is expected and will be
copied to the buffer pointed to by the corresponding
argument and a null ("\0") appended. The user must
ensure that the buffer is large enough. The input string
is considered terminated by a space, tab of ("\n").

c A character is expected and is copied into the byte
pointed to by the argument. The white-space skipping
is suppressed for this conversion. If a field width is
given, the argument is assumed to point to a character
array and the number of characters indicated is copied
to it. NOTE to ensure that the next non-white-space
character is read use "%1s" and that TWO bytes are
pointed to by the argument.

e,f A floating point representation is expected on the input
and the argument must be a pointer to a float. Any of
the usual ways of writing floating point numbers are
recognized.

[This denotes the start of a set of match characters; the
inclusion or exclusion of which delimits the input field.
The white-space skipping is suppressed. The
corresponding argument should be a pointer to a
character array. If the first character in the match string
is not "^", characters are copied from the input as long
as they can be found in the match string. If the first
character is the "^", copying continues while characters
cannot be found in the match string. The match string
is delimited by a "]".

D,O,X Similar to d,o,x above, but the corresponding argument
is considered to point to a long integer.

E,F Similar to e,f above, but the corresponding should
point to a double.

% A match for "%" is sought; no conversion takes place.

Each of the functions returns a count of the number of fields successfully matched
and assigned.

62

Chapter 4. C Standard Library

Caveats
The returned count of matches/assigments does not include character matches and
assigments suppressed by "*". The arguments must ALL be pointers. It is a common
error to call scanf with the value of an item rather than a pointer to it.

Diagnostics
These functions return EOF on end of input or error and a count which is shorter
than expected for unexpected or unmatched items.

See Also
Atoi(), atof(), getc(), printf() Kernighan and Ritchie pp 147-150

Setbuf

Name
Setbuf — fix file buffer

Synopsis

#include <stdio.h>
setbuf(FILE *fp, char *buffer);

Description
When the first character is written to or read from a file after it has been opened by
"fopen()", a buffer is obtained from the system if required and assigned to it. Setbuf
may be used to forestall this by assigning a user buffer to the file.

Setbuf must be used after the file has been opened and before any I/O has taken
place.

The buffer must be of sufficient size and a value for a manifest constant, BUFSIZ, is
defined in the header file for use in declarations.

If the "buffer" argument is NULL (0), the file becomes unbuffered and characters are
read or written singly.

NOTE that the standard error output is unbuffered and the standard output is
buffered.

See Also
fopen(), getc(), putc()

63

Chapter 4. C Standard Library

Sleep

Name
Sleep — stop execution for a time

Synopsis

sleep(int seconds);

Description
The current task is stopped for the specified time.

If "seconds" is zero, the task will sleep for one tick.

Strcat

Name
Strcat, Strncat, Strcmp, Strncmp, Strcpy, Strhcpy, Strncpy,
Strlen, Index, Rindex — string functions

Synopsis

char *strcat(char *s1, char *s2);
char *strncat(char *s1, char *s2, int n);
int strcmp(char *s1, char *s2);
char *strhcpy(char *s1, char *s2);
int strncmp(char *s1, char *s2, int n);
char *strcpy(char *s1, char *s2);
char *strncpy(char *s1, char *s2, int n);
int strlen(char *s);
char *index(char *s, char ch);
char *rindex(char *s, charch);

Description
All strings passed to these functions are assumed null-terminated.

Strcat appends a copy of the string pointed to by "s2" to the end of the string pointed
to by "s1". Strncat copies at most "n" characters. Both return the first argument.

Strcmp compares strings "s1" and "s2" for lexicographic order and returns an integer
less than, equal to or greater than 0 where, respectively, "s1" is less than, equal to or
greater than "s2". Strncmp compares at most "n" characters.

64

Chapter 4. C Standard Library

Strcpy copies characters from "s2" to the space pointed to by "s1" up to and including
the null byte. Strncpy copies exactly "n" characters. If the string "s2" is too short, the
"s1" will be padded with null bytes to make up the difference. If "s2" is too long, "s1"
may not be null-terminated. Both functions return the first argument.

Strhcpy copies string with sign bit terminator.

Strlen returns the number of non-null characters in "s".

Index returns a pointer to the first occurrence of "ch" in "s" or NULL if not found.

Rindex returns a pointer to the last occurrence of "ch" in "s" or NULL if not found.

Caveats
Strcat and strcpy have no means of checking that the space provided is large enough.
It is the user’s responsibility to ensure that string space does not overflow.

See Also
findstr().

System

Name
System — shell command interpreter

Synopsis

system(char *string);

Description
System passes its argument to "shell" which executes it as a command line. The task is
suspended until the shell command is completed and system returns the shell’s exit
status. The maximum length of string is 80 characters. If a longer string is needed,
use os9fork.

See Also
System calls os9fork(), wait().

65

Chapter 4. C Standard Library

Toupper

Name
Toupper, Tolower — character translation

Synopsis

#include <ctype.h>
toupper(int c);
tolower(int c);
_toupper(int c);
_tolower(int c);

Description
The functions toupper and tolower have as their domain the integers in the range -1
to 255. Toupper converts lower-case to upper-case, and tolower converts upper-case
to lower-case. All other arguments are returned unchanged.

The macros _toupper and _tolower do the same things as the corresponding func-
tions, but they have restricted domains and they are faster. The argument to _toupper
must be lower-case, and the argument to _tolower must be upper-case. Arguments
that are outside each macros domain, such as passing a lower-case to _tolower, yield
garbage results.

Ungetc

Name
Ungetc — put character back on input

Synopsis

#include <stdio.h>
ungetc(char ch, FILE *fp);

Description
This function alters the state of the input file buffer such that the next call of "getc()"
returns "ch".

Only one character may be pushed back, and at least on character must have been
read from the file before a call to ungetc.

“Fseek()” erases any puchback.

66

Chapter 4. C Standard Library

Diagnostics
Ungetc returns its character argument unless no puchback could occur, in which case
EOF is returned.

See Also
getc(), fseek()

67

Appendix A. C Reference Manual

A.1. Introduction
This manual describes the C language on the DEC PDP-111, the DEC VAX-11, and
the 68092. Where differences exist, it concentrates on the VAX, but tries to point out
implementation-dependent details. With few execptions, these dependencies follow
directly from the underlying properties of the hardware; the various compilers are
generally quite compatible.

A.2. Lexical Conventions
There are six classes of tokens - identifiers, keywords, constants, strings, operators,
and other separators. Blanks, tabs, newlines, and comments (collectively, “white
space”) as described below are ignored except as they serve to separate tokens.
Some white space is required to separate otherwise adjacent identifiers, keywords,
and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to include the longest string of characters which could possibly constitute a
token.

A.2.1. Comments
The characters /* introduce a comment which terminates with the characters */.
Comments do not nest.

A.2.2. Identifiers (Names)
An identifier is a sequence of letters and digits. The first character must be a letter.
The underscore (_) counts as a letter. Uppercase and lowercase letters are different.
Although there is no limit on the length of a name, only initial characters are signifi-
cant: at least eight characters of a non-external name, and perhaps fewer for external
names. Moreover, some implementations may collapse case distinctions for external
names. The external name sizes include:

PDP-11 7 characters, 2 cases

VAX-11 >100 characters, 2 cases

Motorola 6809 7 characters, 2 cases

A.2.3. Keywords
The following identifiers are reserved for use as keywords and may not be used oth-
erwise:

int extern else

char register for

float typedef do

double static while

68

Appendix A. C Reference Manual

struct goto switch

union return case

long sizeof default

short break entry

unsigned continue register

auto if

Some implementations also reserve the words direct fortran and asm

A.2.4. Constants
There are several kinds of constants. Each has a type; an introduction to types is
given in Section A.4. Hardware characteristics that affect sizes are summarized in
“Hardware Characteristics” under Section A.2.

A.2.4.1. Integer Constants
An integer constant consisting of a sequence of digits is taken to be octal if it be-
gins with 0 (digit zero). An octal constant consists of the digits 0 through 7 only. A
sequence of digits preceded by 0x or 0X (digit zero) is taken to be a hexadecimal in-
teger. The hexadecimal digits include a or A through f or F with values 10 through
15. Otherwise, the integer constant is taken to be decimal. A decimal constant whose
value exceeds the largest signed machine integer is taken to be long; an octal or hex
constant which exceeds the largest unsigned machine integer is likewise taken to be
long.

A.2.4.2. Explicit Long Constants
A decimal, octal, or hexadecimal integer constant immediately followed by l (letter
ell) or L is a long constant. As discussed below, on some machines integer and long
values may be considered identical.

A.2.4.3. Character Constants
A character constant is a character enclosed in single quotes, as in ’x’. The value of a
character constant is the numerical value of the character in the machine’s character
set.

Certain nongraphic characters, the single quote (’) and the backslash (\), may be
represented according to the following table of escape sequences:

newline NL (LF) \n

horizontal tab HT \t

vertical tab VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

backslash \ \\

single quote ’ \’

69

Appendix A. C Reference Manual

bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are
taken to specify the value of the desired character. A special case of this construction
is \0 (not followed by a digit), which indicates the character NUL. If the character
following a backslash is not one of those specified, the behavior is undefined. A new-
line character is illegal in a character constant. The type of a character constant is
int.

A.2.4.4. Floating Constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of digits. Either the integer part or the fraction part (not both)
may be missing. Either the decimal point or the e and the exponent (not both) may
be missing. Every floating constant is taken to be double-precision.

A.2.5. Strings
A string is a sequence of characters surrounded by double quotes, as in "...". A
string has type “array of char” and storage class static (see Section A.4) and is
initialized with the given characters. The compiler places a null byte (\0) at the end
of each string so that programs which scan the string can find its end. In a string, the
double quote character (") must be preceded by a \; in addition, the same escapes as
described for character constants may be used.

A \ and the immediately following newline are ignored. All strings, even when writ-
ten identically, are distinct.

A.2.6. Hardware Characteristics
The following figure summarize certain hardware properties that vary from machine
to machine.

Table A-1. DEC PDP-11 Hardware Characteristics

DEC PDP-11 DEC VAX-11 6809
(ASCII) (ASCII) (ASCII)

char 8 bits 8 bits 8 bits

int 16 32 16

short 16 16 16

long 32 32 32

float 32 32 32

double 64 64 64

float range ±10±38 ±10±38 ±10±38

double range ±10±38 ±10±38 ±10±38

70

Appendix A. C Reference Manual

A.3. Syntax Notation
Syntactic categories are indicated by italic type and literal words and characters in
bold type. Alternative categories are listed on separate lines. An optional terminal or
nonterminal symbol is indicated by the subscript “opt,” so that

{ expression
opt

}

indicates an optional expression enclosed in braces. The syntax is summarized in
Section A.18.

A.4. What’s in a name?
C bases the interpretation of an identifier upon two attributes of the identifier: its
storage class and its type. The storage class determines the location and lifetime of the
storage associated with an identifier; the type determines the meaning of the values
found in the identifier’s storage.

There are four declarable storage classes: automatic, static, external, and register. Au-
tomatic variables are local to each invocation of a block (see Section A.9.2) and are
discarded upon exit from the block. Static variables are local to a block but retain their
values upon reentry to a block even after control has left the block. External variables
exist and retain their values throughout the execution of the entire program and may
be used for communication between functions, even separately compiled functions.
Register variables are (if possible) stored in the fast registers of the machine; like au-
tomatic variables, they are local to each block and disappear on exit from the block.

C supports several fundamental types of objects:

Objects declared as characters (char) are large enough to store any member of the
implementation’s character set, and if a genuine character from that character set is
stored in a char variable, its value is equivalent to the integer code for that character.
Other quantities may be stored into character variables, but the implementation is
machine dependent.

Up to three sizes of integer, declared short int, int, and long int, are available.
Longer integers provide no less storage than shorter ones, but the implementation
may make either short integers or long integers, or both, equivalent to plain integers.
“Plain” integers have the natural size suggested by the host machine architecture.
The other sizes are provided to meet special needs.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n where
n is the number of bits in the representation. (On the PDP-11, unsigned long quanti-
ties are not supported.)

Single-precision floating point (float) and double precision floating point (double)
may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they
will be referred to as arithmetic types. Types char and int of all sizes will collectively
be called integral types. float and double types will collectively be called floating
types.

Besides the fundamental arithmetic types, there is a conceptually infinite class of de-
rived types constructed from the fundamental types in the following ways:

• arrays of objects of most types

• functions which return objects of a given type

• pointers to objects of a given type

• structures containing a sequence of objects of various types

• unions capable of containing any one of several objects of various types.

71

Appendix A. C Reference Manual

In general these methods of constructing objects can be applied recursively.

A.5. Objects and lvalues
An object is a manipulatable region of storage. An lvalue is an expression referring
to an object. An obvious example of an lvalue expression is an identifier. There are
operators which yield lvalues: for example, if E is an expression of pointer type, then
*E is an lvalue expression referring to the object to which E points. The name “lvalue”
comes from the assignment expression E1 = E2 in which the left operand E1 must
be an lvalue expression. The discussion of each operator below indicates whether it
expects lvalue operands and whether it yields an lvalue.

A.6. Conversions
A number of operators may, depending on their operands, cause conversion of the
value of an operand from one type to another. This part explains the result to be
expected from such conversions. The conversions demanded by most ordinary oper-
ators are summarized under “Arithmetic Conversions.” The summary will be sup-
plemented as required by the discussion of each operator.

A.6.1. Characters and Integers
A character or a short integer may be used wherever an integer may be used. In
all cases the value is converted to an integer. Conversion of a shorter integer to a
longer preserves sign. Whether or not sign-extension occurs for characters is machine
dependent, but it is guaranteed that a member of the standard character set is non-
negative. Of the machines treated here, only the PDP-11 and VAX-11 sign-extend. On
these machines, char variables range in value from -128 to 127. The more explicit
type unsigned char forces the values to range from 0 to 255.

On machines that treat characters as signed, the characters of the ASCII set are all
non-negative. However, a character constant specified with an octal escape suffers
sign extension and may appear negative; for example, ’\377’ has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is truncated on
the left. Excess bits are simply discarded.

A.6.2. Float and Double
All floating arithmetic in C is carried out in double precision. Whenever a float ap-
pears in an expression it is lengthened to double by zero padding its fraction. When
a double must be converted to float, for example by an assignment, the double is
rounded before truncation to float length. This result is undefined if it cannot be
represented as a float. On the VAX, the compiler can be directed to use single perci-
sion for expressions containing only float and interger operands.

A.6.3. Floating and Integral
Conversions of floating values to integral type are rather machine dependent. In par-
ticular, the direction of truncation of negative numbers varies. The result is undefined
if it will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of accu-
racy occurs if the destination lacks sufficient bits.

72

Appendix A. C Reference Manual

A.6.4. Pointers and Integers
An expression of integral type may be added to or subtracted from a pointer; in such
a case, the first is converted as specified in the discussion of the addition operator.
Two pointers to objects of the same type may be subtracted; in this case, the result is
converted to an integer as specified in the discussion of the subtraction operator.

A.6.5. Unsigned
Whenever an unsigned integer and a plain integer are combined, the plain integer
is converted to unsigned and the result is unsigned. The value is the least unsigned
integer congruent to the signed integer (modulo 2wordsize). In a 2’s complement rep-
resentation, this conversion is conceptual; and there is no actual change in the bit
pattern.

When an unsigned short integer is converted to long, the value of the result is the
same numerically as that of the unsigned integer. Thus the conversion amounts to
padding with zeros on the left.

A.6.6. Arithmetic Conversions
A great many operators cause conversions and yield result types in a similar way.
This pattern will be called the “usual arithmetic conversions.”

a. First, any operands of type char or short are converted to int, and any
operands of type unsigned char or unsigned short are converted to
unsigned int.

b. Then, if either operand is double, the other is converted to double and that is
the type of the result.

c. Otherwise, if either operand is unsigned long, the other is converted to
unsigned long and that is the type of the result.

d. Otherwise, if either operand is long, the other is converted to long and that is
the type of the result.

e. Otherwise, if one operand is long, and the other is unsigned int, they are
both converted to unsigned long and that is the type of the result.

f. Otherwise, if either operand is unsigned, the other is converted to unsigned
and that is the type of the result.

g. Otherwise, both operands must be int, and that is the type of the result.

A.7. Expressions
The precedence of expression operators is the same as the order of the major sub-
sections of this section, highest precedence first. Thus, for example, the expressions
referred to as the operands of + (see Section A.7.4) are those expressions defined un-
der Section A.7.1, Section A.7.2, and Section A.7.3. Within each subpart, the operators
have the same precedence. Left- or right-associativity is specified in each subsection
for the operators discussed therein. The precedence and associativity of all the ex-
pression operators are summarized in the grammar of Section A.18.

Otherwise, the order of evaluation of expressions is undefined. In particular, the com-
piler considers itself free to compute subexpressions in the order it believes most

73

Appendix A. C Reference Manual

efficient even if the subexpressions involve side effects. The order in which subex-
pression evaluation takes place is unspecified. Expressions involving a commutative
and associative operator (*, +, &, |, ^) may be rearranged arbitrarily even in the pres-
ence of parentheses; to force a particular order of evaluation, an explicit temporary
must be used.

The handling of overflow and divide check in expression evaluation is undefined.
Most existing implementations of C ignore integer overflows; treatment of division
by 0 and all floating-point exceptions varies between machines and is usually ad-
justable by a library function.

A.7.1. Primary Expressions
Primary expressions involving ., ->, subscripting, and function calls group left to
right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-list

opt
)

primary-expression . identifier
primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as dis-
cussed below. Its type is specified by its declaration. If the type of the identifier is
“array of ...”, then the value of the identifier expression is a pointer to the first object
in the array; and the type of the expression is “pointer to ...”. Moreover, an array iden-
tifier is not an lvalue expression. Likewise, an identifier which is declared “function
returning ...”, when used except in the function-name position of a call, is converted
to “pointer to function returning ...”.

A constant is a primary expression. Its type may be int, long, or double depend-
ing on its form. Character constants have type int and floating constants have type
double.

A string is a primary expression. Its type is originally “array of char”, but following
the same rule given above for identifiers, this is modified to “pointer to char” and the
result is a pointer to the first character in the string. (There is an exception in certain
initializers; see Section A.8.6.)

A parenthesized expression is a primary expression whose type and value are identi-
cal to those of the unadorned expression. The presence of parentheses does not affect
whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary ex-
pression. The intuitive meaning is that of a subscript. Usually, the primary expression
has type “pointer to ...”, the subscript expression is int, and the type of the result is
“...”. The expression E1[E2] is identical (by definition) to *((E1)+E2)). All the clues
needed to understand this notation are contained in this subpart together with the
discussions in Section A.7.2 and Section A.7.4 on identifiers, * and + respectively.

74

Appendix A. C Reference Manual

The implications are summarized under “Arrays, Pointers, and Subscripting” under
Section A.14.

A function call is a primary expression followed by parentheses containing a possibly
empty, comma-separated list of expressions which constitute the actual arguments to
the function. The primary expression must be of type “function returning ...,” and
the result of the function call is of type “...”. As indicated below, a hitherto unseen
identifier followed immediately by a left parenthesis is contextually declared to rep-
resent a function returning an integer; thus in the most common case, integer-valued
functions need not be declared.

Any actual arguments of type float are converted to double before the call. Any of
type char or short are converted to int. Array names are converted to pointers. No
other conversions are performed automatically; in particular, the compiler does not
compare the types of actual arguments with those of formal arguments. If conversion
is needed, use a cast; see Section A.7.2 and Section A.8.7.

In preparing for the call to a function, a copy is made of each actual parameter. Thus,
all argument passing in C is strictly by value. A function may change the values of
its formal parameters, but these changes cannot affect the values of the actual pa-
rameters. It is possible to pass a pointer on the understanding that the function may
change the value of the object to which the pointer points. An array name is a pointer
expression. The order of evaluation of arguments is undefined by the language; take
note that the various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression.
The first expression must be a structure or a union, and the identifier must name a
member of the structure or union. The value is the named member of the structure
or union, and it is an lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from - and >) followed by an
identifier is an expression. The first expression must be a pointer to a structure or a
union and the identifier must name a member of that structure or union. The result
is an lvalue referring to the named member of the structure or union to which the
pointer expression points. Thus the expression E1->MOS is the same as (*E1).MOS.
Structures and unions are discussed in Section A.8.5 under Section A.8.

A.7.2. Unary Operators
Expressions with unary operators group right to left.

unary-expression:
* expression
& lvalue
- expression
! expression
~ expression
++ lvalue
--lvalue
lvalue ++
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection ; the expression must be a pointer, and the
result is an lvalue referring to the object to which the expression points. If the type of
the expression is “pointer to ...,” the type of the result is “...”.

75

Appendix A. C Reference Manual

The result of the unary & operator is a pointer to the object referred to by the lvalue.
If the type of the lvalue is “...”, the type of the result is “pointer to ...”.

The result of the unary - operator is the negative of its operand. The usual arith-
metic conversions are performed. The negative of an unsigned quantity is computed
by subtracting its value from 2n where n is the number of bits in the corresponding
signed type. There is no unary + operator.

The result of the logical negation operator ! is one if the value of its operand is zero,
zero if the value of its operand is nonzero. The type of the result is int. It is applicable
to any arithmetic type or to pointers.

The ~ operator yields the one’s complement of its operand. The usual arithmetic con-
versions are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix ++ is incremented. The value is
the new value of the operand but is not an lvalue. The expression ++x is equivalent
to x=x+1. See the discussions Section A.7.4 and Section A.7.14 for information on
conversions.

The lvalue operand of prefix -- is decremented analogously to the prefix ++ operator.

When postfix ++ is applied to an lvalue, the result is the value of the object referred to
by the lvalue. After the result is noted, the object is incremented in the same manner
as for the prefix ++ operator. The type of the result is the same as the type of the lvalue
expression.

When postfix -- is applied to an lvalue, the result is the value of the object referred
to by the lvalue. After the result is noted, the object is decremented in the manner as
for the prefix -- operator. The type of the result is the same as the type of the lvalue
expression.

An expression preceded by the parenthesized name of a data type causes conversion
of the value of the expression to the named type. This construction is called a cast.
Type names are described in Section A.8.7.

The sizeof operator yields the size in bytes of its operand. (A byte is undefined by
the language except in terms of the value of sizeof. However, in all existing imple-
mentations, a byte is the space required to hold a char.) When applied to an array, the
result is the total number of bytes in the array. The size is determined from the decla-
rations of the objects in the expression. This expression is semantically an unsigned
constant and may be used anywhere a constant is required. Its major use is in com-
munication with routines like storage allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case
it yields the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression
sizeof(type)-2 is the same as (sizeof(type))-2.

A.7.3. Multiplicative Operators
The multiplicative operators *, /, and % group left to right. The usual arithmetic con-
versions are performed.

multiplicative expression:
expression * expression
expression / expression
expression % expression

76

Appendix A. C Reference Manual

The binary * operator indicates multiplication. The * operator is associative, and ex-
pressions with several multiplications at the same level may be rearranged by the
compiler. The binary / operator indicates division.

The binary % operator yields the remainder from the division of the first expression
by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of trunca-
tion is machine-dependent if either operand is negative. On all machines covered by
this manual, the remainder has the same sign as the dividend. It is always true that
(a/b)*b + a%b is equal to a (if b is not 0).

A.7.4. Additive Operators
The additive operators + and - group left to right. The usual arithmetic conversions
are performed. There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an ar-
ray and a value of any integral type may be added. The latter is in all cases converted
to an address offset by multiplying it by the length of the object to which the pointer
points. The result is a pointer of the same type as the original pointer which points to
another object in the same array, appropriately offset from the original object. Thus if
P is a pointer to an object in an array, the expression P+1 is a pointer to the next object
in the array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same level
may be rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual arithmetic
conversions are performed. Additionally, a value of any integral type may be sub-
tracted from a pointer, and then the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by
division by the length of the object) to an int representing the number of objects
separating the pointed-to objects. This conversion will in general give unexpected
results unless the pointers point to objects in the same array, since pointers, even to
objects of the same type, do not necessarily differ by a multiple of the object length.

A.7.5. Shift Operators
The shift operators << and >> group left to right. Both perform the usual arithmetic
conversions on their operands, each of which must be integral. Then the right
operand is converted to int; the type of the result is that of the left operand. The
result is undefined if the right operand is negative or greater than or equal to the
length of the object in bits. On the VAX a negative right operand is interpreted as
reversing the direction of the shift.

shift-expression:
expression << expression
expression >> expression

77

Appendix A. C Reference Manual

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits. Vacated
bits are 0 filled. The value of E1>>E2 is E1 right-shifted E2 bit positions. The right shift
is guaranteed to be logical (0 fill) if E1 is unsigned; otherwise, it may be arithmetic.

A.7.6. Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater
than or equal to) all yield 0 if the specified relation is false and 1 if it is true. The type
of the result is int. The usual arithmetic conversions are performed. Two pointers
may be compared; the result depends on the relative locations in the address space
of the pointed-to objects. Pointer comparison is portable only when the pointers point
to objects in the same array.

A.7.7. Equality Operators

equality-expression:
expression == expression
expression != expression

The == (equal to) and the != (not equal to) operators are exactly analogous to the rela-
tional operators except for their lower precedence. (Thus a<b == c<d is 1 whenever
a<b and c<d have the same truth value).

A pointer may be compared to an integer only if the integer is the constant 0. A
pointer to which 0 has been assigned is guaranteed not to point to any object and
will appear to be equal to 0. In conventional usage, such a pointer is considered to be
null.

A.7.8. Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The
usual arithmetic conversions are performed. The result is the bitwise AND function
of the operands. The operator applies only to integral operands.

78

Appendix A. C Reference Manual

A.7.9. Bitwise Exclusive OR Operator

exclusive-or-expression:
expression ^ expression

The ^ operator is associative, and expressions involving ^ may be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise exclusive OR
function of the operands. The operator applies only to integral operands.

A.7.10. Bitwise Inclusive OR Operator

inclusive-or-expression:
expression | expression

The | operator is associative, and expressions involving | may be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise inclusive OR
function of its operands. The operator applies only to integral operands.

A.7.11. Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands evaluate to
nonzero, 0 otherwise. Unlike &, && guarantees left to right evaluation; moreover, the
second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the funda-
mental types or be a pointer. The result is always int.

A.7.12. Logical OR Operator

logical-or-expression:
expression || expression

The || operator groups left to right. It returns 1 if either of its operands evaluates to
nonzero, 0 otherwise. Unlike |, || guarantees left to right evaluation; moreover, the
second operand is not evaluated if the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of the funda-
mental types or be a pointer. The result is always int.

A.7.13. Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if
it is nonzero, the result is the value of the second expression, otherwise that of third
expression. If possible, the usual arithmetic conversions are performed to bring the
second and third expressions to a common type. If both are structures or unions of

79

Appendix A. C Reference Manual

the same type, the result has the type of the structure or union. If both pointers are
of the same type, the result has the common type. Otherwise, one must be a pointer
and the other the constant 0, and the result has the type of the pointer. Only one of
the second and third expressions is evaluated.

A.7.14. Assignment Operators
There are a number of assignment operators, all of which group right to left. All
require an lvalue as their left operand, and the type of an assignment expression is
that of its left operand. The value is the value stored in the left operand after the
assignment has taken place. The two parts of a compound assignment operator are
separate tokens.

assignment-expression:
lvalue = expression
lvalue += expression
lvalue -= expression
lvalue *= expression
lvalue /= expression
lvalue %= expression
lvalue >>= expression
lvalue <<= expression
lvalue &= expression
lvalue ^= expression
lvalue |= expression

In the simple assignment with =, the value of the expression replaces that of the
object referred to by the lvalue. If both operands have arithmetic type, the right
operand is converted to the type of the left preparatory to the assignment. Second,
both operands may be structures or unions of the same type. Finally, if the left
operand is a pointer, the right operand must in general be a pointer of the same
type. However, the constant 0 may be assigned to a pointer; it is guaranteed that this
value will produce a null pointer distinguishable from a pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking
it as equivalent to E1 = E1 op (E2); however, E1 is evaluated only once. In += and
-=, the left operand may be a pointer; in which case, the (integral) right operand is
converted as explained in Section A.7.4. All right operands and all nonpointer left
operands must have arithmetic type.

A.7.15. Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value
of the left expression is discarded. The type and value of the result are the type
and value of the right operand. This operator groups left to right. In contexts where
comma is given a special meaning, e.g., in lists of actual arguments to functions (see
Section A.7.1) and lists of initializers (see Section A.8.6), the comma operator as de-
scribed in this subpart can only appear in parentheses. For example,

f(a, (t=3, t+2), c)

80

Appendix A. C Reference Manual

has three arguments, the second of which has the value 5.

A.8. Declarations
Declarations are used to specify the interpretation which C gives to each identifier;
they do not necessarily reserve storage associated with the identifier. Declarations
have the form

declaration:
decl-specifiers declarator-list

opt
;

The declarators in the declarator-list contain the identifiers being declared. The decl-
specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers

opt
sc-specifier decl-specifiers

opt

The list must be self-consistent in a way described below.

A.8.1. Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a “storage class specifier”
only for syntactic convenience. See Section A.8.8 for more information. The meanings
of the various storage classes were discussed in Section A.4.

The auto, static, and register declarations also serve as definitions in that they
cause an appropriate amount of storage to be reserved. In the extern case, there
must be an external definition (see Section A.10) for the given identifiers somewhere
outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a
hint to the compiler that the variables declared will be heavily used. Only the first
few such declarations in each function are effective. Moreover, only variables of cer-
tain types will be stored in registers; on the PDP-11, they are int or pointer. One
other restriction applies to register variables: the address-of operator & cannot be ap-
plied to them. Smaller, faster programs can be expected if register declarations are
used appropriately, but future improvements in code generation may render them
unnecessary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is missing
from a declaration, it is taken to be auto inside a function, extern outside. Exception:
functions are never automatic.

81

Appendix A. C Reference Manual

A.8.2. Type Specifiers
The type-specifiers are

type-specifier:
char

short
int
long
unsigned
float
double

struct-or-union-specifier
typedef-name

At most one of the words long or short may be specified in conjunction with int; the
meaning is the same as if int were not mentioned. The word long may be specified
in conjunction with float; the meaning is the same as double. The word unsigned
may be specified alone, or in conjunction with int or any of its short or long varieties,
or with char.

Otherwise, at most on type-specifier may be given in a declaration. In particular,
adjectival use of long, short, or unsigned is not permitted with typedef names. If
the type-specifier is missing from a declaration, it is taken to be int.

Specifiers for structures and unions are discussed in Section A.8.5. Declarations with
typedef names are discussed in Section A.8.8.

A.8.3. Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of
declarators, each of which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializer

opt

Initializers are discussed in Section A.8.6. The specifiers in the declaration indicate
the type and storage class of the objects to which the declarators refer. Declarators
have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression

opt
]

The grouping is the same as in expressions.

82

Appendix A. C Reference Manual

A.8.4. Meaning of Declarators
Each declarator is taken to be an assertion that when a construction of the same form
as the declarator appears in an expression, it yields an object of the indicated type
and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If
an unadorned identifier appears as a declarator, then it has the type indicated by the
specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding
of complex declarators may be altered by parentheses. See the examples below.

Now imagine a declaration

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this declara-
tion makes the identifier have type “... T ,” where the “...” is empty if D1 is just a plain
identifier (so that the type of x in “int x” is just int). Then if D1 has the form

*D

the type of the contained identifier is “... pointer to T &.”

If D1 has the form

D()

then the contained identifier has the type “... function returning T.” If D1 has the form

D[constant-expression]

or

D[]

then the contained identifier has type “... array of T.” In the first case, the constant
expression is an expression whose value is determinable at compile time , whose type
is int, and whose value is positive. (Constant expressions are defined precisely in
Section A.15) When several “array of” specifications are adjacent, a multidimensional
array is created; the constant expressions which specify the bounds of the arrays may
be missing only for the first member of the sequence. This elision is useful when the
array is external and the actual definition, which allocates storage, is given elsewhere.
The first constant expression may also be omitted when the declarator is followed by
initialization. In this case the size is calculated from the number of initial elements
supplied.

An array may be constructed from one of the basic types, from a pointer, from a
structure or union, or from another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The re-
strictions are as follows: functions may not return arrays or functions although they
may return pointers; there are no arrays of functions although there may be arrays of
pointers to functions. Likewise, a structure or union may not contain a function; but
it may contain a pointer to a function.

As an example, the declaration

83

Appendix A. C Reference Manual

int i, *ip, f(), *fip(), (*pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an integer,
a function fip returning a pointer to an integer, and a pointer pfi to a function
which returns an integer. It is especially useful to compare the last two. The bind-
ing of *fip() is *(fip()). The declaration suggests, and the same construction in
an expression requires, the calling of a function fip. Using indirection through the
(pointer) result to yield an integer. In the declarator (*pfi)(), the extra parentheses
are necessary, as they are also in an expression, to indicate that indirection through a
pointer to a function yields a function, which is then called; it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Fi-
nally,

static int x3d[3][5][7];

declares a static 3-dimensional array of integers, with rank 3×5×7. In complete detail,
x3d is an array of three items; each item is an array of five arrays; each of the latter
arrays is an array of seven integers. Any of the expressions x3d, x3d[i], x3d[i][j],
x3d[i][j][k] may reasonably appear in an expression. The first three have type
“array” and the last has type int.

A.8.5. Structure and Union Declarations
A structure is an object consisting of a sequence of named members. Each member
may have any type. A union is an object which may, at a given time, contain any one
of several members. Structure and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or
union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
84

Appendix A. C Reference Manual

struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure
or union. A structure member may also consist of a specified number of bits. Such a
member is also called a field ; its length, a non-negative constant expression, is set
off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the dec-
larations are read left to right. Each nonfield member of a structure begins on an
addressing boundary appropriate to its type; therefore, there may be unnamed holes
in a structure. Field members are packed into machine integers; they do not straddle
words. A field which does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word.

Fields are assigned right to left on the PDP-11 and VAX-11, left to right on the 3B 20.

A struct-declarator with no declarator, only a colon and a width, indicates an un-
named field useful for padding to conform to externally-imposed layouts. As a spe-
cial case, a field with a width of 0 specifies alignment of the next field at an imple-
mentation dependant boundary.

The language does not restrict the types of things that are declared as fields, but
implementations are not required to support any but integer fields. Moreover, even
int fields may be considered to be unsigned. On the PDP-11, fields are not signed
and have only integer values; on the VAX-11, fields declared with int are treated
as containing a sign. For these reasons, it is strongly recommended that fields be
declared as unsigned. In all implementations, there are no arrays of fields, and the
address-of operator & may not be applied to them, so that there are no pointers to
fields.

A union may be thought of as a structure all of whose members begin at offset 0 and
whose size is sufficient to contain any of its members. At most, one of the members
can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified
by the list. A subsequent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also permit
the long part of the declaration to be given once and used several times. It is illegal
to declare a structure or union which contains an instance of itself, but a structure or
union may contain a pointer to an instance of itself.

85

Appendix A. C Reference Manual

The third form of a structure or union specifier may be used prior to a declaration
which gives the complete specification of the structure or union in situations in which
the size of the structure or union is unnecessary. The size is unnecessary in two situ-
ations: when a pointer to a structure or union is being declared and when a typedef
name is declared to be a synonym for a structure or union. This, for example, allows
the declaration of a pair of structures which contain pointers to each other.

The names of members and tags do not conflict with each other or with ordinary
variables. A particular name may not be used twice in the same structure, but the
same name may be used in several different structures in the same scope.

A simple but important example of a structure declaration is the following binary
tree structure:

struct tnode
{

char tword[20];
int count;
struct tnode *left;
struct tnode *right;

};

which contains an array of 20 characters, an integer, and two pointers to similar struc-
tures. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of
the given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s.right->tword[0]

refers to the first character of the tword member of the right subtree of s.

A.8.6. Initialization
A declarator may specify an initial value for the identifier being declared. The ini-
tializer is preceded by = and consists of an expression or a list of values nested in
braces.

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
86

Appendix A. C Reference Manual

expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be constant
expressions, which are described in Section A.15, or expressions which reduce to the
address of a previously declared variable, possibly offset by a constant expression.
Automatic or register variables may be initialized by arbitrary expressions involving
constants and previously declared variables and functions.

Static and external variables that are not initialized are guaranteed to start off as zero.
Automatic and register variables that are not initialized are guaranteed to start off as
garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type),
it consists of a single expression, perhaps in braces. The initial value of the object is
taken from the expression; the same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer con-
sists of a brace-enclosed, comma-separated list of initializers for the members of the
aggregate written in increasing subscript or member order. If the aggregate contains
subaggregates, this rule applies recursively to the members of the aggregate. If there
are fewer initializers in the list than there are members of the aggregate, then the
aggregate is padded with zeros. It is not permitted to initialize unions or automatic
aggregates.

Braces may in some cases be omitted. If the initializer begins with a left brace, then
the succeeding comma-separated list of initializers initializes the members of the ag-
gregate; it is erroneous for there to be more initializers than members. If, however,
the initializer does not begin with a left brace, then only enough elements from the
list are taken to account for the members of the aggregate; any remaining members
are left to initialize the next member of the aggregate of which the current aggregate
is a part.

A final abbreviation allows a char array to be initialized by a string. In this case
successive characters of the string initialize the members of the array.

For example,

int x[] = { 1, 3, 5 };

declares and initializes x as a one-dimensional array which has three members, since
no size was specified and there are three initializers.

float y[4][3] =
{

{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array
y[0], namely y[0][0], y[0][1], and y[0][2]. Likewise, the next two lines initialize
y[1] and y[2]. The initializer ends early and therefore y[3] is initialized with 0.
Precisely, the same effect could have been achieved by

float y[4][3] =
{

1, 3, 5, 2, 4, 6, 3, 5, 7

87

Appendix A. C Reference Manual

};

The initializer for y begins with a left brace but that for y[0] does not; therefore,
three elements from the list are used. Likewise, the next three are taken successively
for y[1] and y[2]. Also,

float y[4][3] =
{

{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional array) and leaves the
rest 0.

Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

A.8.7. Type Names
In two contexts (to specify type conversions explicitly by means of a cast and as an
argument of sizeof), it is desired to supply the name of a data type. This is accom-
plished using a “type name”, which in essence is a declaration for an object of that
type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression

opt
]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible
to identify uniquely the location in the abstract-declarator where the identifier would
appear if the construction were a declarator in a declaration. The named type is then
the same as the type of the hypothetical identifier. For example,

int
int *
int *[3]
int (*)[3]
int *()
int (*)()

88

Appendix A. C Reference Manual

int (*[3])()

name respectively the types “integer,” “pointer to integer,” “array of three pointers
to integers,” “pointer to an array of three integers,” “function returning pointer to
integer,” “pointer to function returning an integer,” and “array of three pointers to
functions returning an integer.”

A.8.8. Typedef
Declarations whose “storage class” is typedef do not define storage but instead de-
fine identifiers which can be used later as if they were type keywords naming funda-
mental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as
part of any declarator therein becomes syntactically equivalent to the type keyword
naming the type associated with the identifier in the way described in Section A.8.4.
For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is “pointer to
int, ” and that of z is the specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only synonyms for types which
could be specified in another way. Thus in the example above distance is considered
to have exactly the same type as any other int object.

A.9. Statements
Except as indicated, statements are executed in sequence.

A.9.1. Expression Statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

89

Appendix A. C Reference Manual

A.9.2. Compound Statement or Block
So that several statements can be used where one is expected, the compound state-
ment (also, and equivalently, called “block”) is provided:

compound-statement:
{ declaration-list

opt
statement-list

opt
}

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer
declaration is pushed down for the duration of the block, after which it resumes its
force.

Any initializations of auto or register variables are performed each time the block
is entered at the top. It is currently possible (but a bad practice) to transfer into a
block; in that case the initializations are not performed. Initializations of static vari-
ables are performed only once when the program begins execution. Inside a block,
extern declarations do not reserve storage so initialization is not permitted.

A.9.3. Conditional Statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is
executed. In the second case, the second substatement is executed if the expression is
0. The “else” ambiguity is resolved by connecting an else with the last encountered
else-less if.

A.9.4. While Statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression re-
mains nonzero. The test takes place before each execution of the statement.

90

Appendix A. C Reference Manual

A.9.5. Do Statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes 0.
The test takes place after each execution of the statement.

A.9.6. For Statement
The for statement has the form:

for (exp-1
opt

; exp-2
opt

; exp-3
opt

) statement

Except for the behavior of continue, this statement is equivalent to

exp-1 ;
while (exp-2)
{

statement
exp-3 ;

}

Thus the first expression specifies initialization for the loop; the second specifies a
test, made before each iteration, such that the loop is exited when the expression
becomes 0. The third expression often specifies an incrementing that is performed
after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the implied
while clause equivalent to while(1); other missing expressions are simply dropped
from the expansion above.

A.9.7. Switch Statement
The switch statement causes control to be transferred to one of several statements
depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must
be int. The statement is typically compound. Any statement within the statement
may be labeled with one or more case prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the same
switch may have the same value. Constant expressions are precisely defined in Sec-
tion A.15.

91

Appendix A. C Reference Manual

There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated and compared
with each case constant. If one of the case constants is equal to the value of the ex-
pression, control is passed to the statement following the matched case prefix. If no
case constant matches the expression and if there is a default, prefix, control passes
to the prefixed statement. If no case matches and if there is no default, then none of
the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues
unimpeded across such prefixes. To exit from a switch, see Section A.9.8.

Usually, the statement that is the subject of a switch is compound. Declarations may
appear at the head of this statement, but initializations of automatic or register vari-
ables are ineffective.

A.9.8. Break Statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch statement;
control passes to the statement following the terminated statement.

A.9.9. Continue Statement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing
while, do, or for statement; that is to the end of the loop. More precisely, in each
of the statements

while (...) { do { for (...) {

statement ; statement ; statement ;

contin: ; contin: ; contin: ;

} } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a null statement,
see Section A.9.13.)

A.9.10. Return Statement
A function returns to its caller by means of the return statement which has one of
the forms

92

Appendix A. C Reference Manual

return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the value of
the expression is returned to the caller of the function. If required, the expression is
converted, as if by assignment, to the type of function in which it appears. Flowing off
the end of a function is equivalent to a return with no returned value. The expression
may be parenthesized.

A.9.11. Goto Statement
Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see Section A.9.12) located in the current function.

A.9.12. Labeled Statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a target of
a goto. The scope of a label is the current function, excluding any subblocks in which
the same identifier has been redeclared. See Section A.11

A.9.13. Null Statement
The null statement has the form

;

A null statement is useful to carry a label just before the } of a compound statement
or to supply a null body to a looping statement such as while.

A.10. External Definitions
A C program consists of a sequence of external definitions. An external definition
declares an identifier to have storage class extern (by default) or perhaps static,
and a specified type. The type-specifier (see Section A.8.2) may also be empty, in
which case the type is taken to be int. The scope of external definitions persists to
the end of the file in which they are declared just as the effect of declarations persists
to the end of a block. The syntax of external definitions is the same as that of all
declarations except that only at this level may the code for functions be given.

93

Appendix A. C Reference Manual

A.10.1. External Function Definitions
Function definitions have the form

function-definition:
decl-specifiers

opt
function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see
Section A.11.2 for the distinction between them. A function declarator is similar to a
declarator for a “function returning ...” except that it lists the formal parameters of
the function being defined.

function-declarator:
declarator (parameter-list

opt
)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

function-body:
declaration-list

opt
compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in
the declaration list. Any identifiers whose type is not given are taken to be int. The
only storage class which may be specified is register; if it is specified, the corre-
sponding actual parameter will be copied, if possible, into a register at the outset of
the function.

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;

{
int m;

m = (a > b) ? a : b;
return((m > c) ? m : c);

}

Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b,
c; is the declaration-list for the formal parameters; { ... } is the block giving the
code for the statement.

The C program converts all float actual parameters to double, so formal parameters
declared float have their declaration adjusted to read double. All char and short
formal parameter declarations are similarly adjusted to read int. Also, since a refer-
ence to an array in any context (in particular as an actual parameter) is taken to mean
a pointer to the first element of the array, declarations of formal parameters declared
“array of ...” are adjusted to read “pointer to”

94

Appendix A. C Reference Manual

A.10.2. External Data Definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static but
not auto or register.

A.11. Scope Rules
A C program need not all be compiled at the same time. The source text of the pro-
gram may be kept in several files, and precompiled routines may be loaded from
libraries. Communication among the functions of a program may be carried out both
through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called the lex-
ical scope of an identifier, which is essentially the region of a program during which
it may be used without drawing “undefined identifier” diagnostics; and second, the
scope associated with external identifiers, which is characterized by the rule that ref-
erences to the same external identifier are references to the same object.

A.11.1. Lexical Scope
The lexical scope of identifiers declared in external definitions persists from the def-
inition through the end of the source file in which they appear. The lexical scope
of identifiers which are formal parameters persists through the function with which
they are associated. The lexical scope of identifiers declared at the head of a block per-
sists until the end of the block. The lexical scope of labels is the whole of the function
in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block,
including the block constituting a function, any declaration of that identifier outside
the block is suspended until the end of the block.

Remember also (see Section A.8.5) that identifiers associated with ordinary variables,
and those associated with structure and union members form two disjoint classes
which do not conflict. Members and tags follow the same scope rules as other iden-
tifiers. typedef names are in the same class as ordinary identifiers. They may be
redeclared in inner blocks, but an explicit type must be given in the inner declara-
tion:

typedef float distance;
...
{

auto int distance;
...

}

The int must be present in the second declaration, or it would be taken to be a dec-
laration with no declarators and type distance.

95

Appendix A. C Reference Manual

A.11.2. Scope of Externals
If a function refers to an identifier declared to be extern, then somewhere among the
files or libraries constituting the complete program there must be at least one external
definition for the identifier. All functions in a given program which refer to the same
external identifier refer to the same object, so care must be taken that the type and
size specified in the definition are compatible with those specified by each function
which references the data.

It is illegal to explicitly initialize any external identifier more than once in the set of
files and libraries comprising a multi-file program. It is legal to have more than one
data definition for any external non-function identifier; explicit use of extern does
not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class takes on an additional
meaning. In these environments, the explicit appearance of the extern keyword in
external data declarations of identities without initialization indicates that the storage
for the identifiers is allocated elsewhere, either in this file or another file. It is required
that there be exactly one definition of each external identifier (without extern) in the
set of files and libraries comprising a mult-file program.

Identifiers declared static at the top level in external definitions are not visible in
other files. Functions may be declared static.

A.12. Compiler Control Lines
The C compiler contains a preprocessor capable of macro substitution, conditional
compilation, and inclusion of named files. Lines beginning with # communicate with
this preprocessor. There may be any number of blanks and horizontal tabs between
the # and the directive. These lines have syntax independent of the rest of the lan-
guage; they may appear anywhere and have effect which lasts (independent of scope)
until the end of the source program file.

A.12.1. Token Replacement
A compiler-control line of the form

#define identifier token-string
opt

causes the preprocessor to replace subsequent instances of the identifier with the
given string of tokens. Semicolons in or at the end of the token-string are part of that
string. A line of the form

#define identifier(identifier, ...)token-string
opt

where there is no space between the first identifier and the (, is a macro definition
with arguments. There may be zero or more formal parameters. Subsequent instances
of the first identifier followed by a (, a sequence of tokens delimited by commas, and
a) are replaced by the token string in the definition. Each occurrence of an identi-
fier mentioned in the formal parameter list of the definition is replaced by the corre-
sponding token string from the call. The actual arguments in the call are token strings
separated by commas; however, commas in quoted strings or protected by parenthe-
ses do not separate arguments. The number of formal and actual parameters must be
the same. Strings and character constants in the token-string are scanned for formal
parameters, but strings and character constants in the rest of the program are not
scanned for defined identifiers to replacement.

96

Appendix A. C Reference Manual

In both forms the replacement string is rescanned for more defined identifiers. In
both forms a long definition may be continued on another line by writing \ at the
end of the line to be continued.

This facility is most valuable for definition of “manifest constants,” as in

#define TABSIZE 100

int table[TABSIZE];

A control line of the form

#undef identifier

causes the identifier’s preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no intervening
#undef, then the two token-strings are compared textually. If the two token-strings
are not identical (all white space is considered as equivalent), then the identifier is
considered to be redefined.

A.12.2. File Inclusion
A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file filename. The
named file is searched for first in the directory of the file containing the #include,
and then in a sequence of specified or standard places. Alternatively, a control line of
the form

#include <filename>

searches only the specified or standard places and not the directory of the #include.
(How the places are specified is not part of the language.)

#includes may be nested.

A.12.3. Conditional Compilation
A compiler control line of the form

#if constant-expression

checks whether the constant expression evaluates to nonzero. (Constant expressions
are discussed in Section A.15. A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it
has been the subject of a #define control line. It is equivalent to #ifdef(identifier).
A control line of the form

97

Appendix A. C Reference Manual

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is equiva-
lent to

#if !defined(identifier).

All three forms are followed by an arbitrary number of lines, possibly containing a
control line

#else

and then by a control line

#endif

If the checked condition is true, then any lines between #else and #endif are ig-
nored. If the checked condition is false, then any lines between the test and a #else
or, lacking a #else, the #endif are ignored.

These constructions may be nested.

A.12.4. Line Control
For the benefit of other preprocessors which generate C programs, a line of the form

#line constant identifier

causes the compiler to believe, for purposes of error diagnostics, that the line number
of the next source line is given by the constant and the current input file is named by
the identifier. If the identifier is absent, the remembered file name does not change.

A.13. Implicit Declarations
It is not always necessary to specify both the storage class and the type of identifiers
in a declaration. The storage class is supplied by the context in external definitions
and in declarations of formal parameters and structure members. In a declaration
inside a function, if a storage class but no type is given, the identifier is assumed to
be int; if a type but no storage class is indicated, the identifier is assumed to be auto.
An exception to the latter rule is made for functions because auto functions do not
exist. If the type of an identifier is “function returning ...,” it is implicitly declared to
be extern.

In an expression, an identifier followed by (and not already declared is contextually
declared to be “function returning int.”

A.14. Types Revisited
This part summarizes the operations which can be performed on objects of certain
types.

98

Appendix A. C Reference Manual

A.14.1. Structures and Unions
Structures and unions may be assigned, passed as arguments to functions, and re-
turned by functions. Other plausible operators, such as equality comparison and
structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of the -> or the
. must specify a member of the aggregate named or pointed to by the expression on
the left. In general, a member of a union may not be inspected unless the value of the
union has been assigned using that same member. However, one special guarantee
is made by the language in order to simplify the use of unions: if a union contains
several structures that share a common initial sequence and if the union currently
contains one of these structures, it is permitted to inspect the common initial part of
any of the contained structures.

A.14.2. Functions
There are only two things that can be done with a function m, call it or take its address.
If the name of a function appears in an expression not in the function-name position
of a call, a pointer to the function is generated. Thus, to pass one function to another,
one might say

int f();
...
g(f);

Then the definition of g might read

g(funcp)
int (*funcp)();

{
...
(*funcp)();
...

}

Notice that f must be declared explicitly in the calling routine since its appearance in
g(f) was not followed by (.

A.14.3. Arrays, Pointers, and Subscripting
Every time an identifier of array type appears in an expression, it is converted into
a pointer to the first member of the array. Because of this conversion, arrays are not
lvalues. By definition, the subscript operator [] is interpreted in such a way that
E1[E2] is identical to *((E1)+E2)). Because of the conversion rules which apply
to +, if E1 is an array and E2 an integer, then E1[E2] refers to the E2-th member
of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

A consistent rule is followed in the case of multidimensional arrays. If E is an n-
dimensional array of rank i×j×...×k, then E appearing in an expression is converted
to a pointer to an (n-1)-dimensional array with rank j×...×k. If the * operator, either
explicitly or implicitly as a result of subscripting, is applied to this pointer, the result
is the pointed-to (n-1)-dimensional array, which itself is immediately converted into
a pointer.

99

Appendix A. C Reference Manual

For example, consider

int x[3][5];

Here x is a 3×5 array of integers. When x appears in an expression, it is converted
to a pointer to (the first of three) 5-membered arrays of integers. In the expression
x[i], which is equivalent to *(x+i), x is first converted to a pointer as described;
then i is converted to the type of x, which involves multiplying i by the length the
object to which the pointer points, namely 5-integer objects. The results are added
and indirection applied to yield an array (of five integers) which in turn is converted
to a pointer to the first of the integers. If there is another subscript, the same argument
applies again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in
the declaration helps determine the amount of storage consumed by an array. Arrays
play no other part in subscript calculations.

A.14.4. Explicit Pointer Conversions
Certain conversions involving pointers are permitted but have
implementation-dependent aspects. They are all specified by means of an explicit
type-conversion operator, see Section A.7.2 and Section A.8.7.

A pointer may be converted to any of the integral types large enough to hold it.
Whether an int or long is required is machine dependent. The mapping function is
also machine dependent but is intended to be unsurprising to those who know the
addressing structure of the machine. Details for some particular machines are given
below.

An object of integral type may be explicitly converted to a pointer. The mapping
always carries an integer converted from a pointer back to the same pointer but is
otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting
pointer may cause addressing exceptions upon use if the subject pointer does not
refer to an object suitably aligned in storage. It is guaranteed that a pointer to an
object of a given size may be converted to a pointer to an object of a smaller size and
back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to
allocate, and return a char pointer; it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double));
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable
for conversion to a pointer to double; then the use of the function is portable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and mea-
sures bytes. The char’s have no alignment requirements; everything else must have
an even address.

On the VAX-11, pointers are 32 bits long and measure bytes. Elementary objects are
aligned on a boundary equal to their length, except that double quantities need

100

Appendix A. C Reference Manual

be aligned only on even 4-byte boundaries. Aggregates are aligned on the strictest
boundary required by any of their constituents.

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most objects are
aligned on 4-byte boundaries. shorts are aligned in all cases on 2-byte boundaries.
Arrays of characters, all structures, ints, longs, floats, and doubles are aligned on
4-byte boundries; but structure members may be packed tighter.

A.15. Constant Expressions
In several places C requires expressions which evaluate to a constant: after case, as
array bounds, and in initializers. In the first two cases, the expression can involve
only integer constants, character constants, and sizeof expressions, possibly con-
nected by the binary operators

+ - * / % & | ^ << >> == != < > <= >= && ||

or by the unary operators

- ~

or by the ternary operator

?:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed
above, one can also use floating constants and arbitrary casts and can also apply the
unary & operator to external or static objects and to external or static arrays sub-
scripted with a constant expression. The unary & can also be applied implicitly by
appearance of unsubscripted arrays and functions. The basic rule is that initializers
must evaluate either to a constant or to the address of a previously declared external
or static object plus or minus a constant.

A.16. Portability Considerations
Certain parts of C are inherently machine dependent. The following list of potential
trouble spots is not meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic
and integer division have proven in practice to be not much of a problem. Other
facets of the hardware are reflected in differing implementations. Some of these, par-
ticularly sign extension (converting a negative character into a negative integer) and
the order in which bytes are placed in a word, are nuisances that must be carefully
watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from
machine to machine as does the set of valid types. Nonetheless, the compilers all do
things properly for their own machine; excess or invalid register declarations are
ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly
unwise to write programs that depend on any of these properties.

101

Appendix A. C Reference Manual

The order of evaluation of function arguments is not specified by the language. The
order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter character con-
stants may be permitted. The specific implementation is very machine dependent be-
cause the order in which characters are assigned to a word varies from one machine
to another.

Fields are assigned to words and characters to integers right to left on some ma-
chines and left to right on other machines. These differences are invisible to isolated
programs that do not indulge in type punning (e.g., by converting an int pointer to a
char pointer and inspecting the pointed-to storage) but must be accounted for when
conforming to externally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most no-
tably, the current PDP-11 compiler will not initialize structures containing bitfields,
and does not accept a few assignment operators in certain contexts where the value
of the assignment is used.

A.17. Anachronisms
Since C is an evolving language, certain obsolete constructions may be found in older
programs. Although most versions of the compiler support such anachronisms, ulti-
mately they will disappear, leaving only a portability problem behind.

Earlier versions of C used the form =op instead of op= for assignment operators. This
leads to ambiguities, typified by:

x=-1

which actually decrements x since the = and the - are adjacent, but which might easily
be intended to assign -1 to x.

The syntax of initializers has changed: previously, the equals sign that introduces and
initializer was not present, so instead of

int x = 1;

one used

int x 1;

The change was made because the initialization

int f (1+2)

resembles a function declaration closely enough to confuse the compilers.

A.18. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an
exact statement of the language.

A.18.1. Expressions
The basic expressions are:

expression:
primary
* expression

102

Appendix A. C Reference Manual

&lvalue
- expression
! expression
~ expression
++ lvalue
--lvalue
lvalue ++
lvalue --
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list

opt
)

primary [expression]
primary . identifier
primary - identifier

lvalue:
identifier
primary [expression]
lvalue . identifier
primary - identifier
* expression
(lvalue)

The primary-expression operators

() [] . -<

have highest priority and group left to right. The unary operators

* & - ! ~ ++ -- sizeof (type-name)

have priority below the primary operators but higher than any binary operator and
group right to left. Binary operators group left to right; they have priority decreasing
as indicated below.

binop:
* / %
+ -
>> <<
< > <= >=
== !=
&
^

103

Appendix A. C Reference Manual

|
&&
||

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to left.

asgnop:
= += -= *= /= %= >>= <<= &= ^= |=

The comma operator has the lowest priority and groups left to right.

A.18.2. Declarations

declaration:
decl-specifiers init-declarator-list

opt
;

decl-specifiers:
type-specifier decl-specifiers

opt
sc-specifier decl-specifiers

opt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
char

short
int
long
unsigned
float
double

struct-or-union-specifier
typedef-name

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer

opt

declarator:
identifier

104

Appendix A. C Reference Manual

(declarator)
* declarator
declarator ()
declarator [constant-expression

opt
]

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression

opt
]

typedef-name:
105

Appendix A. C Reference Manual

identifier

A.18.3. Statements

compound-statement:
{ declaration-list

opt
statement-list

opt
}

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp

opt
’;exp

opt
’;exp

opt
’) statement

switch (expression) statement
case constant-expression : statement
default : statement
break ;

continue ;
return ;
return expression ;

goto identifier ;
identifier : statement
;

A.18.4. External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
decl-specifier

opt
function-declarator function-body

function-declarator:

106

Appendix A. C Reference Manual

declarator (parameter-list
opt

)

parameter-list:
identifier
identifier , parameter-list

function-body:
declaration-list

opt
compound-statement

data-definition:
extern declaration ;
static declaration ;

A.18.5. Preprocessor

#define identifier token-string
opt

#define identifier(identifier,...)token-string
opt

#undef identifier
#include "filename"
#include <filename>
#if constant-expression
#ifdef identifier
#ifndef identifier
#else
#endif
#line constant identifier

Notes
1. DEC PDP-11, and DEC VAX-11 are trademarks of Digital Equipment Corpora-

tion.

2. 6809 is a trademark of Motorola.

107

Appendix B. Compiler Generated Error Messages

Below is a list of the error messages that the C compiler generates, and, if applicable,
probable causes and K & R Appendix A section number (in parenthesis) to see for
more specific information.

already a local variable

Variable has already been declared at the current block level. (Section A.8.1, Sec-
tion A.9.2)

argument : <text>

Error from preprocessor. Self-explanatory. Most common cause of this error is
not being able to find an include file.

argument error

Function argument declared as type struct, union or function. Pointers to such
types, however are allowed. (Section A.10.1)

argument storage

Function arguments may only be declared as storage class register. (Section
A.10.1)

bad character

A character not in the C character set (probably a control char) was encountered
in the source file. (2)

both must be integral

>> and << operands cannot be FLOAT or DOUBLE. (Section A.7.5)

break error

The break statement is allowed only inside a while, do, for or switch block. (Sec-
tion A.9.8)

can’t take address

& operator not allowed in a register variable. Operand must otherwise be an
lvalue. (Section A.7.2)

cannot cast

Type result of cast cannot be FUNCTION or ARRAY. (Section A.7.2, Section
A.8.7)

cannot evaluate size

Could not determine size from declaration or initializer. (Section A.8.6, Section
A.14.3)

cannot initialize

Storage class or type does not allow variable to be initialized. (Section A.8.6)

compiler trouble

Compiler detedted something it couldn’t handle. Try compiling the program
again. If this error still occurs, contact Microware.

108

Appendix B. Compiler Generated Error Messages

condition needed

While, do, for, switch and if statements require a condition expression. (Section
A.9.3)

constant expression required

Initializer expressions for statis or external variables cannot reference variables.
They may, however, refer to the address of a previously declared variable. This
installation allows no initializer expressions unless all operands are of type INT
or CHAR (Section A.8.6)

constant overflow

Input numeric constant was too large for the implied or explicit type. (Section
A.2.6, [PDP-11])

constant required

Variables are not allowed for array dimensions or cases. (Section A.8.3, Section
A.8.7, Section A.9.7)

continue error

The continue statement is allowed only inside a while, do, or for block. (Section
A.9.9)

declaration mismatch

This declaration conflicts with a previous one. This is typically caused by declar-
ing a function to return a non-integer type after a reference has been made to
the function. Depending on the line structure of the declaration block, this error
may be reported on the line following the erroneous declaration. (Section A.11,
Section A.11.1, Section A.11.2)

divide by zero

Divide by zero occurred when evaluating a constant expression.

? expected

? is any character that was expected to appear here. Missing semicolons or braces
cause this error.

expression missing

An expression is required here.

function header missing

Statement or expression encountered outside a function. Typically causes by mis-
matched braces. (Section A.10.1)

function type error

A function cannot be declared as returning an array, function, struct, or union.
(Section A.8.4, Section A.10.1)

function unfinished

End-of-file encountered before the end of function definition. (Section A.10.1)

identifier missing

Identifier name required here but none was found.

109

Appendix B. Compiler Generated Error Messages

illegal declaration

Declarations are allowed only at the beginning of a block. (Section A.9.2)

label required

Label name required on goto statement. (Section A.9.11)

label undefined

Goto to label not defined in the current function. (Section A.9.12)

lvalue required

Left side of assigment must be able to be "stored into". Array names, functions,
structs, etc. are no lvalues. (Section A.7.1)

multiple defaults

Only one default statement is allowed in a switch block. (Section A.9.7)

multiple definition

Identifier name was declared more than once in the same block level (Section
A.9.2, Section A.11.1)

must be integral

Type of object required here must be type int, char or pointer.

name clash

Struct-union member and tag names must be mutually distinct. (Section A.8.5)

name in cast

Identifier name found in a cast. Only types are allowed. (Section A.7.2, Section
A.8.7)

named twice

Names in a function parameter list may appear only once. (Section A.10.1)

no ’if’ for ’else’

Else statement found with no matching if. This is typically caused by extra or
missing braces and/or semicolons. (Section A.9.3)

no switch statement

Case statements can only appear within a switch block. (Section A.9.7)

not a function

Primary in expression is not type "function returning...". If this is really a function
call, the function name was declared differently elsewhere. (Section A.7.1)

not an argument

Name does not appear in the function parameter list. (Section A.10.1)

operand expected

Unary operators require one operand, binary operators two. This is typically
caused by misplaced parenthesis, casts or operators. (Section A.7.1)

110

Appendix B. Compiler Generated Error Messages

out of memory

Compiler dynamic memory overflow. The compiler requires dynamic memory
for symbol table entries, block level declarations and code generation. Three ma-
jor factors affect this memory usage. Permanent declarations (those appearing on
the outer block level (used in include files)) must be reserved from the dynamic
memory for the duration of the compilation of the file. Each { causes the compiler
to perform a block-level recursion which may involve "pushing down" previous
declarations which consume memory. Auto class initializers require saving ex-
pression trees until past the declarations which may be very memory-expensive
if may exist. Avoiding excessive declarations, both permanent and inside com-
pound statement blocks conserve memory. If this error occurs on an auto initial-
izer, try initializing the value in the code body.

pointer mismatch

Pointers refer to different types. Use a case if required. (Section A.7.1)

pointer or integer required

A pointer (of any type) or integer is required to the left of the ’->’ operator. (Sec-
tion A.7.1)

pointer required

Pointer operand required with unary * operator. (Section A.7.1)

primary expected

Primary expression required here. (Section A.7.1)

should be NULL

Second and third expression of ?: conditional operator cannot be pointers to dif-
ferent types. If both are pointers, they must be of the same type or one of the two
must be null. (Section A.7.13)

**** STACK OVERFLOW ****

Compiler stack has overflowed. Most likely cause is very deep lock-level nesting
or hundreds of switch cases.

storage error

Reg and auto storage classes mey only be used within functions. (Section A.8.1)

struct member mismatch

Identical member names in two different structures must have the same type
and offset in both. (Section A.8.5)

struct member required

Identifier used with . and -> operators must be a structure member name. (Sec-
tion A.7.1)

struct syntax

Brace, comma, etc. is missing in a struct declaration. (Section A.8.5)

struct or union inappropiate

Struct or union cannot be used in the context.

syntax error

Expression, declaration or statement is incorrectly formed.

111

Appendix B. Compiler Generated Error Messages

third expression missing

? must be followed by a : with expression. This error may be causes by un-
matched parenthesis or other errors in the expression. (Section A.7.13)

too long

Too many characters provided in a string initializing a character array. (Section
A.8.6)

too many brackets

Unmatched or unexpected brackets encountered processiong an initializer. (Sec-
tion A.8.6)

too many elements

More data items supplied for aggregate level in initializer than members of the
aggregate. (Section A.8.6)

type error

Compiler type matching error. Should never happen.

type mismatch

Types and/or operators in expression do not correspond. (6)

typedef - not a variable

Typedef type name cannot be used in this manner. (Section A.8.8)

undeclared variable

no declaration exists at any block level for this identifier.

undefined structure

Union or struct declaration refers to an undefined structure name. (Section A.8.5)

unions not allowed

Cannot initialize union members. (Section A.8.6)

unterminated character constant

Unmatched ’ character delimiters. (Section A.2.4.3)

unterminated string

Unmatched " string delimiters. (Section A.2.5)

while expected

No while found for do statement. (Section A.9.5)

112

Appendix C. Compiler Phase Command Lines

This appendix describes the command lines and options for the individual compiler
phases. Each phase of the compiler may be executed separately. The following infor-
mation describes the options available to each phase.

C.1. cc1 & cc2 (C executives)

cc [options] file... [options]

Recognized file suffixes:

.c C source file

.a Assembly language source file

.r Relocatable module format file

Recognized options: (UPPER and lower case is equiv.)

-a Suppress assembly. Leave output in ".a" file.

-e=n Edition number (n) is supplied to c.prep for
inclusion in module psect and/or to c.link for
inclusion as the edition number of the linked
module.

-o Inhibits assembly code optimizer pass.

-p Invoke compiler function profiler.

-r Suppress link step. Leave output in ".r" file.

-m=size Size in pages (in kbytes if followed by a K) of
additional memory the linker should allocate
to object module.

-l=path Library file for linker to search before the
standard library.

-f=path Override other output naming. Module name
(in object module) is the last name in the
pathlist. -f is not allowed with -a or -r.

-c Output comments in assembly language code.

-s Suppress generation of stack-checking code.

-dNAME Is equivalent to #define NAME 1 in the
preprocessor. -dNAME=STRING is equivalent to
#define NAME STRING.

-n=name output module name. name is used to override
the -f default output name.

CC1 only:

-x Create, but do not execute c.com command file.

CC2 only:

113

Appendix C. Compiler Phase Command Lines

-q Quiet mode. Suppress echo of file names.

C.2. c.prep (C macro preprocessor)

c.prep [options] path [options]

path is read as input. C.prep causes c.comp to generate psect directive with last el-
ement of pathlist and _c as the psect name. If path is /d0/myprog.c, psect name is
myprog_c. Output is always to stdout.

Recognized options:

-l Cause c.comp to copy source lines to assembly
output as comments.

-E=n

-e=n Use n as psect edition number.

-DNAME Same as described above for cc1/cc2.

C.3. c.comp (One-pass compiler)

c.comp [options] [file] [options]

If file is not present, c.comp will read stdin. Input text need not be c.prep output,
but no preprocessor directives are recognized (#include, #define, macros etc.). Out-
put assembly code is normally to stdout. Error message output is always written to
stdout.

Recognized options:

-s Suppress generation of stack checking code.

-p Generate profile code.

-o=path Write assembly output to path.

C.4. c.pass (Pass One/Two of Two-pass Compiler)

c.pass1 [options] [file] [options]

c.pass2 [options] [file] [options]

Command line and options are the same as c.comp. If the options given to c.pass1
are not given to c.pass2 also, c.pass2 will not be able to read the c.pass1 output. Both
c.pass1 and c.pass2 read stdin and write stdout normally.

114

Appendix C. Compiler Phase Command Lines

C.5. c.opt (Assembly code optimizer)

c.opt [inpath] [outpath]

C.opt reads stdin and writes stdout. inpath must be present if outpath is given.
Since c.opt rearranges and changes code, comments and assembler directives may be
rearranged.

C.6. c.asm (Assembler)

c.asm file [options]

C.asm reads file as assembly language input. Errors are written to stderr. Options
are turned on with one ’-’ and negated with ’--’. To turn listing on use -l. To turn
listing off use --l. To turn conditionals off use --c.

Recognized options:

-o=path Write relocatable output to path. Must be a disk
file.

-l Write listing to stdout. (default off)

-c List conditional assembly lines. (default on)

-f Formfeed for top of form. (default off)

-g List all code bytes generated. (default off)

-x Suppress macro expansion listing. (default on)

-e Print errors. (default on)

-s Print symbol table. (default off)

-dn Set lines per page to n. (default 66).

-wn Set line width to n. (default 80).

C.7. c.link (Linker)

c.link [options] mainline subn... [options]

C.link turns c.asm output into executable form. All input files must contain relocat-
able object format (ROF) files. mainline specifies the base module from which to
resolve external references. A mainline module is indicated by setting the type/lang
value in the psect directive to non-zero. No other ROF can contain a mainline psect.
The mainline and all subroutine files will appear in the final linked object module
whether actually referenced or not.

For the C Compiler, cstart.r is the mainline module. It is the mainline module’s job
to perform the initialization of data and the relocation of any data-text and data-
data references within the initialized data using the information in the object module
supplied be c.link.

Recognized options:

-o=path Linker object output file. Must be a disk file.
The last element in path is used as the module
name unless overridden by -n.

115

Appendix C. Compiler Phase Command Lines

-n=name Use name as object file name.

-l=path Use path as library file. A library file consistes
of one or more merged assembly ROF files.
Each psect in the file is checked to see if it
resolves any unresolved references. If so, the
module is included on the final output module,
otherwise it is skipped. No mainline psects are
allowed in a library file. Library files are
searched on the order given on the command
line.

-E=n

-e=n n is used for the edition number in the final
output module. 1 is used is -e is not present.

-M=size size indicates the number of pages (kbytes if
size is followed by a K) of additional memory,
c.link will allocate to the data area of the final
object module. If no additional memory is
given, c.link add up the total data stack
requirements found in the psect of the modules
in the input modules.

-m Prints linkage map indicating base addresses of
the psects in the final object module.

-s Prints final addresses assigned to symbols in
the final object module.

-b=ept Link C functions to be callable by BASIC09. ept
is the name of the function to be transferred to
when BASIC09 executes the RUN command.

-t Allows static data to appear in a BASIC09
callable module. It is assumed the C function
called and the calling BASIC09 program have
provided a sufficiently large static storage data
area pointed to by the Y register.

116

Appendix D. Interfacing to Basic09

The object code generated by the Microware C Compiler can be made callable from
the BASIC09 "RUN" statement. Certain portions of a BASIC09 program written in C
can have a drmatic effect on execution speed. To effectively utilize this feature, one
must be familiar with both C and BASIC09 internal data representation and proce-
dure calling protocol.

C type "int" and BASIC09 type "INTEGER" are identical; both are two byte two’s com-
plement integers. C type "char" and BASIC09 type "BYTE" and "BOOLEAN" are also
identical. Keep in mind that C will sign-extend characters for comparisons yielding
the range -128 to 127.

BASIC09 strings are terminated by 0xff (255). C strings are terminated by 0x00 (0). If
the BASIC09 string is of maximum length, the terminator is not present. Therefore,
string length as well as terminator checks must be performed on BASIC09 strings
when processing them with C functions.

The floating point format used by C and BASIC09 are not directly compatible. Since
both use a binary floating point format it is possible to convert BASIC09 reals to C
doubles and vice-versa.

Multi-dimensional arrays are stored by BASIC09 in a different manner than C. Multi-
dimensional arrays are stored by BASIC09 in a column-wise manner; C stores them
row-wise. Consider the following example:

BASIC09 matrix: DIM array(5,3):INTEGER
The elements in consecutive memory locations (read left to
right, line by line) are stored as:
(1,1),(2,1),(3,1),(4,1),(5,1)
(1,2),(2,2),(3,2),(4,2),(5,2)
(1,3),(2,3),(3,3),(4,3),(5,3)

C matrix: int array[5][3];
(1,1),(1,2),(1,3)
(2,1),(2,2),(2,3)
(3,1),(3,2),(3,3)
(4,1),(4,2),(4,3)
(5,1),(5,2),(5,3)

Therefore to access BASIC09 matrix elements in C, the subscripts must be transposed.
To access element array(4,2) in BASIC09 use array[2][4] in C.

The details on interfacing BASIC09 to C are best described by example. The remain-
der of this appendix is a mini tutorial demonstrating the process starting with simple
examples and working up to more complex ones.

D.1. Example 1 - Simple Integer Aritmetic Case
This first example illustrates a simple case. Write a C function to add an integer value
to three integer variables.

build bt1.c
? addints(cnt,value,s1,arg1,s2,arg2,s2,arg3,s4)
? int *value,*arg1,*arg2,*arg3;
? {
? *arg1 += *value;
? *arg2 += *value;
? *arg3 += *value;
? }
?

117

Appendix D. Interfacing to Basic09

That’s the C function. The name of the function is "addints". The name is information
for C and c.link; BASIC09 will not know anything about the name. Page 9-13 of the
BASIC09 Reference manual describes how BASIC09 passes parameters to machine
language modules. Since BASIC09 and C pass parameters in a similar fashion, it is
easy to access BASIC09 values. The first parameter on the BASIC09 stack is a two-byte
count of the number of following parameter pairs. Each pair consists of an address
and size of value. For most C functions, the parameter count and pair size is not used.
The address, however, is the useful piece of information. The address is declared in
the C function to always be a "pointer to..." type. BASIC09 always passes addresses
to procedures, even for constant values. The arguments cnt, s1, s2, s3 and s4 are just
place holders to indicate the presence of the parameter count and argument sizes on
the stack. These can be used to check validity of the passed arguments if desired.

The line "int *value,*arg1,*arg2,*arg3" declares the parameters (in this case all "point-
ers to int"), so the compiler will generate the correct code to access the BASIC09 val-
ues. The remaining lines increment each arg by the passed value. Notice that a simple
arithmetic operation is performed here (addition), so C will not have to call a library
function to do the operation.

To compile this function, the following C compiler command line is used:

cc2 bt1.c -rs

Cc2 uses the Level-Two compiler. Replace cc2 with cc1 if you are using the Level-
One compiler. The -r option causes the compiler to leave bt1.r as output, ready to be
linked. The -s option suppresses the call to the stack-checking function. Since we will
be making a module for BASIC09, cstart.r will not be used. Therefore, no initialized
data, static data, or stack checking is allowed. More on this later.

The bt1.r file must now be converted to a loadable module that BASIC09 can link to
by using a special linking technique as follows:

c.link bt1.r -b=addints -o=addints

This command tells the linker to read bt1.r as input. The option "-b=addints" tells
the linker to make the output file a module that BASIC09 can link to and that the
function "addints" is to be the entrypoint in the module. You may give many input
files to c.link in this mode. It resolves references in the normal fashion. The name
given to the "-b=" option indicates which of the functions is to be entered directly
by the BASIC09 RUN command. The option "-o=addints" says what the name of the
output file is to be, in this case "addints". This name should be the name used in the
BASIC09 RUN command to call the C procedure. The name given in "-o=" option
is the name of the procedure to RUN. The "-b=" option is merely information to the
linker so it can fill in the correct module entrypoint offset.

Enter the following BASIC09 program:

PROCEDURE btest
DIM i,j,k:INTEGER
i=1
j=132
k=-1033
RUN addints(4,i,j,k)
PRINT i,j,k
END

When this procedure is RUN, it should print:

5 136 -1029

118

Appendix D. Interfacing to Basic09

indicating that our C function worked!

D.2. Example 2 - More Complex Integer Aritmetic Case
The next example shows how static memeory can be used. Take the C function from
the previous example and modify it to add the number of times it has been entered
to the increment:

buld bt2.c
? static int entcnt;
?
? addints(cnt,cmem,cmemsiz,value,s1,arg1,s2,arg2,s2,arg3,s4)
? char *cmem;
? int *value,*arg1,*arg2,*arg3;
? {
? #asm
? ldy 6,s base of static area
? #endasm
? int j = *value + entcnt++;
?
? *arg1 += j;
? *arg2 += j;
? *arg3 += j;
? }
?

This example differs from the first in a number of ways. The line "static in entcnt"
defines an integer value name entcnt global to bt2.c. The parameter cmem and the
line "char *cmen" indicate a character array. The array will be used in the C function
for global/static storage. C accesses non-auto and non-register variables indexed off
the Y register. cstart.r normally takes care of setting this up. Since cstart.r will not be
used for this BASIC09-callable function, we have to take measures to make sure the
Y register points to a valid and sufficiently large area of memory. The line "ldy 6,s" is
assembly language code embedded in C source that loads the Y register with the first
parameter passed by BASIC09. If the first parameter in the BASIC09 RUN statement
is an array, and the "ldy 6,s" is placed immediately after the "{" opening the function
body, the offset will always be "6,s". Note the line beginning "int j = ...". This line uses
an initializer which, in this case, is allowed because j is of class "auto". No classes but
"auto" and "register" can be initialized in BASIC09-callable C functions.

To compile this function, the following C compiler command line is used:

cc2 bt2.c -rs

Again, the -r option leaves bt2.r as output and the -s option suppresses stack check-
ing.

Normally, the linker considers it to be an error if the "-b=" option appears and the
final linked module requires a data memory allocation. In our case here, we require
a data memory allocation and we will provide the code to make sure everything is
set up correctly. The "-t" linker option causes the linker to print the total data mem-
ory requirement so we can allow for it rather than complaining about it. Our linker
command line is:

c.link bt2.r -o=addints -b=addints -r

The linker will respond with "BASIC09 static data size is 2 bytes". We must make sure
cmem points to at least 2 bytes of memory. The memory should be zeroed to conform
to C specifications.

Enter the following BASIC09 program:

119

Appendix D. Interfacing to Basic09

PROCEDURE btest
DIM i,j,k,n;INTEGER
DIM cmem(10):INTEGER
FOR i=1 TO 10

cmem(i)=0
NEXT i
FOR n=1 TO 5

i=1
j=132
k=-1033
RUN addints(cmem,4,i,j,k)
PRINT i,j,k

NEXT n
END

This program is similar to the previous example. Our area for data memory is a 10-
integer array (20 bytes) which is way more than the 2 bytes for this example. It is
better to err on the generous side. Cmem is an integer array for convenience in ini-
tializing it to zero (per C data memory specifications). When the program is run, it
calls addints 5 times with the same data values. Because addints add the number of
times it was called to the value, the i,j,k values should be 4+number of times called.
When run, the program prints:

5 136 -1029
6 137 -1028
7 138 -1027
8 139 -1026
9 140 -1025

Works again!

D.3. Example 3 - Simple String Manipulation
This example shows how to access BASIC09 strings through C functions. For this
example, write the C version of SUBSTR.

build bt3.c
? /* Find substring from BASIC09 string:
? RUN findstr(A$,B$,findpos)
? returns in fndpos the position in A$ that B$ was found or
? 0 if not found. A$ and B$ must be strings, fndpos must be
? INTEGER.
? */
? findstr(cnt,string,strcnt,srchstr,srchcnt,result);
? char *string,*srchstr;
? int strcnt, srchcnt, *result;
? {
? *result = finder(string,strcnt,srchstr,srchcnt);
? }
?
? static finder(str,strlen,pat,patlen)
? char *str,*pat;
? int strlen,patlen;
? {
? int i;
? for(i=1;strlen-- > 0 && *str!=0xff; ++i)
? if(smatch(str++,pat,patlen))
? return i;
? }
?
? static smatch(str,pat,patlen)
? register char *str,*pat;
? int patlen;

120

Appendix D. Interfacing to Basic09

? {
? while(patlen-- > 0 && *pat != 0xff)
? if(*str++ != *pat++)
? return 0;
? return 1;
? }
?

Compile this program:

cc2 bt3.c -rs

And link it:

c.link bt3.r -o=findstr -b=findstr

The BASIC09 test program is:

PROCEDURE btest
DIM a,b:STRING[20]
DIM matchpos:INTEGER
LOOP
INPUT "String ",a
INPUT "Match ",b
RUN findstr(a,b,matchpos)
PRINT "Matched at position ",matchpos
ENDLOOP

When this program is run, it should print the position where the matched string was
found in the source string.

D.4. Example 4 - Quicksort
The next example programs demonstrate how one might implement a quicksort writ-
ten in C to sort some BASIC09 data.

C integer quicksort program:

#define swap(a,b) { int t; t=a; a=b; b=t; }

/* qsort to be called by BASIC09:
dim d(100):INTEGER any size INTEGER array
run cqsort(d,100) calling qsort.

*/

qsort(argcnt,iarray,iasize,icount,icsiz)
int argcnt, /* BASIC09 argument count */

iarrary[], /* Pointer to BASIC09 integer array */
iasize, /* and it’s size */
icount, / Pointer to BASIC09 (sort count) */
icsiz; /* Size of integer */

{
sort(iarray,0,*icount); /* initial qsort partition */

}

/* standard quicksort algorithm from Horowitz-Sahni */
static sort(a,m,n)
register int *a,m,n;
{

register i,j,x;

if(m < n) {
i = m;

j = n + 1;

121

Appendix D. Interfacing to Basic09

x = a[m];
for(;;) {

do i += 1; while(a[i] < x); /* left partition */
do j -= 1; while(a[j] > x); /* right partition */
if(i < j)

swap(a[i],a[j]) /* swap */
else break;

}
swap(a[m],a[j]);
sort(a,m,j-1); /* sort left */
sort(a,j+1,n); /* sort right */
}

}

The BASIC09 program is:

PROCEDURE sorter
DIM i,n,d(1000):INTEGER
n=1000
i=RND(-(PI))
FOR i=1 to n
d(i):=INT(RND(1000))
NEXT i
PRINT "Before:"
RUN prin(1,n,d)
RUN qsortb(d,n)
PRINT "After:"
RUN prin(1,n,d)
END

PROCEDURE prin
PARAM n,m,d(1000):INTEGER
DIM i:INTEGER
FOR i=n TO m
PRINT d(i); " ";
NEXT i
PRINT
END

C string quicksort program:

/* qsort to be called by BASIC09:
dim cmemory:STRING[10] This should be at least as large as

the linker says the data size should
be.

dim d(100):INTERGER Any size INTEGER array.

run cqsort(cmemory,d,100) calling qsort. Note that the pro-
cedure name run in the linked OS-9
subroutine module. The module name
need not be the name of the C func-
tion.

*/

int maxstr; /* string maximum length */

static strbcmp(str1,str2) /* basic09 string compare */
register char *str1,*str2;
{

int maxlen;

for (maxlen = maxstr; *str1 == *str2 ;++str1)
if (maxlen-- >0 || *str2++ == 0xff)

return 0;
return (*str1 - *str2);

}

122

Appendix D. Interfacing to Basic09

cssort(argcnt,stor,storsiz,iaarray,iasize,elemlen,elsiz,
icount,icsiz)

int argcnt; /* BASIC09 argument count */
char *stor; /* Pointer to string (C data storage) */
char iarray[]; /* Pointer to BASIC09 integer array */
int iasize, /* and it’s size */

elemlen, / Pointer integer value (string length) */
elsiz, /* Size of integer */
icount, / Pointer to integer (sort count) */
icsiz; /* Size of integer */

{
/* The following assembly code loads Y with the first

arg provided by BASIC09. This code MUST be the first code
in the function after the declarations. This code assumes the
address of the data area is the first parameter in the BASIC09
RUN command. */

#asm
ldy 6,s get addr for C storage

#endasm

/* Use the C library qsort function to do the sort. Our
own BASIC09 string compare function will compare the strings.

*/

qsort(iarray,*icount,maxstr=*elemlen,strbcmp);
}

/* define stuff cstart.r normally defines */
#asm
_stkcheck:
rts dummy stack check function

vsect
errno: rmb 2 C function system error number
_flacc: rmb 8 C library float/long accumulator
endsect

#endasm

The BASIC09 calling programs: (words file contains strings to sort)

PROCEDURE ssorter
DIM a(200):STRING[20]
DIM cmemory:STRING[20]
DIM i,n:INTEGER
DIM path:INTEGER
OPEN #path,"words":READ

n=100
FOR i=1 to n
INPUT #path,a(i)
NEXT i
CLOSE #path
RUN prin(a,n)
RUN cssort(cmemory,a,20,n)
RUN prin(a,n)
END

PROCEDURE prin
PARAM a(100):STRING[20]; n:INTEGER
DIM i:INTEGER
FOR i=1 TO n
PRINT i; " "; a(i)
NEXT i
PRINT i
END

123

Appendix D. Interfacing to Basic09

D.5. Example 5 - Floating Point
The next example shows how to access BASIC09 reals from C functions:

flmult(cnt,cmemory,cmemsiz,realarg,realsize)
int cnt; /* number of arguments */
char *cmemory; /* pointer to some memory for C use */
double *realarg; /* pointer to real */
{
#asm
ldy 6,s get static memory address

#endasm

double number;

getbreal(&number,realarg); /* get the BASIC09 real */
number *= 2.; /* number times two*/
putbreal(realarg,&number); /* give back to BASIC09 */

}

/* getreal(creal,breal)
get a 5-byte real from BASIC09 format to C format */

getbreal(creal,breal)
double *creal,*breal;
{

register char *cr,*br; /* setup some char pointers */

cr = creal;
br = breal;

#asm
* At this point U reg contains address of C double
* 0,s contains address of BASIC09 real
ldx 0,s get address of B real

clra clear the C double
clrb
std 0,u
std 2,u
std 4,u
stb 6,u
ldd 0,x
beq g3 BASIC09 real is zero

ldd 1,x get hi B mantissa
and a #$7f clear place for sign
std 0,u put hi C matissa
ldd 3,x get lo B mantissa
andb #$fe mask off sign
std 2,u put lo C mantissa
lda 4,x get B sign byte
lsra shift out sign
bcc g1
lda 0,u get C sign byte
ora #$80 tun on sign
sta 0,u put C sign byte

g1 lda 0,x get B exponent
suba #128 excess 128
sta 7,u put C exponent

g3 clra clear carry
#endasm

}

/* putbreal(breal,creal)

124

Appendix D. Interfacing to Basic09

put C format double into a 5-byte real from BASIC09 */

putbreal(breal,creal)
double *breal,*creal;
{

register char *cr,*br; /* setup some pointers */

cr = creal;
br = breal;

#asm
* At this point U reg contains address of C double
* 0,s contains address of BASIC09 real
ldx 0,s get address of B real

lda 7,u get C exponent
bne p0 not zero?
clra clear the BASIC09
clrb real
std 0,x
std 2,x
std 4,x
bra p3 and exit

p0 ldd 0,u get hi C mantissa
ora #$80 this bit always on for normalized real
std 1,x put hi B mantissa
ldd 2,u get lo C mantissa
std 3,x put lo B mantissa
incb round mantissa
bne p1
inc 3,x
bne p1
inc 2,x
bne p1
inc 1,x

p1 andb #$fe turn off sign
stb 4,x put B sign byte
lda 0,u get C sign byte
lsla shift out sign
bcc p2 bra if positive
orb #$01 turn on sign
stb 4,x put B sign byte

p2 lda 7,u get C exponent
adda #128 less 128
sta 0,x put B exponent

p3 clra clear carry
#endasm
}

/* replace cstart.r definitions for BASIC09 */
#asm
_stkcheck:
_stkchec:
rts

vsect
_flacc: rmb 8
errno: rmb 2
endsect

#endasm

BASIC09 calling program:

PROCEDURE btest
DIM a:REAL

125

Appendix D. Interfacing to Basic09

DIM i:INTEGER
DIM cmemory:STRING[32]
a=1.
FOR i=1 TO 10
RUN flmult(cmemory,a)
PRINT a

NEXT i
END

D.6. Example 6 - Matrix Elements
The last program is an example of accessing BASIC09 matrix elements. The C pro-
gram:

matmult(cnt,cmemory,cmemsiz,matxaddr,matxsize,scalar,scalsize)
char *cmemory; /* pointer to some memory for C use */
int matxaddr[5][3]; /* pointer a double dim integer array */
int *scalar; /* pointer to integer */
{
#asm
ldy 6,s get static memory address

#endasm

int i,j;

for(i=0; i<5; ++i)
for(j=1; j<3; ++j)

matxaddr[j][i] *= *scalar; /* multiply by value */
}
#asm
_stkcheck:
_stkchec:
rts

vsect
_flacc: rmb 8
errno: rmb 2
endsect

#endasm

BASIC09 calling program:

PROCEDURE btest
DIM im(5,3):INTEGER
DIM i,j:INTEGER
DIM cmem:STRING[32]
FOR i=1 TO 5

FOR j=1 TO 3
READ im(i,j)

NEXT j
NEXT i
DATA 11,13,7,3,4,0,5,7,2,8,15,0,0,14,4
FOR i=1 TO 5

PRINT im(i,1),im(i,2),im(i,3)
NEXT i
PRINT
RUN matmult(cmem,im,64)
FOR i=1 TO 5

PRINT im(i,1),im(i,2),im(i,3)
NEXT i
END

126

Appendix E. Relocating Macro Assembler Reference

This appendix gives a summary of the operation of the "Relocating Macro Assem-
bler" (named c.asm as distributed with the C Compiler). This appendix and the ex-
ample assembly source files supplied with the C compiler should provide the basic
information on how to use the "Relocating Macro Assembler" to create relocatable-
object format files (ROF). It is further assumed that you are familiar with the 6809 in-
struction set and mnemonics. See the Microware Relocating Assembler Manual for a
more detailed description. The main function of this appendix is to enable the reader
to understand the output produced by c.asm. The Relocating Macro Assembler al-
lows programs to be compiled separately and then linked together, and it also allows
macros to be defined within programs.

Differences between the Relocating Macro Assembler (RMA) and the Microware In-
teractive Assembler (MIA):

RMA does not have an interactive mode. Only a disk file is allowed as input.

RMA output is an ROF file. The ROF file must be processed by the linker to produce an
executable OS9 memory module. The layout of the ROF file is described later.

RMA has a number of new directives to control the placement of code and data in the
executable module. Since RMA does not produce memory modules, the MIA directives
"mod" and "emod" are not present. Instead, new directives PSECT and VSECT control the
allocation of code and data areas by the linker.

RMA has no equivalent to the MIA "setdp" directive. Data (and DP) allocation is handled
by the linker.

E.1. Symbolic Names
A symbolic name is valid if it consists of from one to nine uppercase or lowercase
characters, decimal digits or the characters "$", "_", "." or "@". RMA does not fold
lowercase letters to uppercase. The names "Hi.you" and "HI.YOU" are distinct names.

E.2. Label field
If a symbolic name in the label field of a source statement is followed by a “:” (colon),
the name will be known globally (by all modules linked together). If no colon appears,
the name will be known only in the PSECT in which it was defined. PSECT will be
described later.

E.3. Undefined names
If a symbolic name is used in an expression and hasn’t been defined, RMA assumes
the name is external to the PSECT. RMA will record information about the reference
so the linker can adjust the operand accordingly. External names cannot appear in
operand expressions for assembler directives.

E.4. Listing format
00098 0032 59 + rolb
00117 0045=17ffb8 label lbsr _dmove Comment
^ ^ ^^ ^ ^ ^ ^ ^
| | || | | | | Start of comment
| | || | | | Start of operand
| | || | | Start of mnemonic
| | || | Start of label
| | || A "+" indicates a line generated by a macro

127

Appendix E. Relocating Macro Assembler Reference

| | || expansion.
| | |Start of object code bytes.
| | An "=" here indicates that the operand contains an
| | external reference.
| Location counter value
Line number.

E.5. Section Location Counters
Each section contains the following location counters:

PSECT

instruction location counter

VSECT

initialized direct page location counter
non-initialized direct page location counter
initialized data location counter
non-initialized data location counter

CSECT

base offset counter

E.6. Section Directives
RMA contains 3 section directives. PSECT indicates to the linker the beginning of a
relocatable-object-format file (ROF) and initializes the instruction and data location
counters and assembles code into the ROF object code area. VSECT causes RMA to
change to the data location counters and place any generated code into the appropi-
ate ROF data area. CSECT initializes a base value for assigning offsets to symbols.
The end of these sections is indicated by the ENDSECT directive.

The source statements placed in a particular section cause the linker to perform a
function appropiate for the statement. Therefore, the mnemonics allowed within a
section are restricted as follows:

• The mnemonics are allowed inside or outside any section: nam, opt, ttl, pag, spc,
use, fail, rept, endr, ifeq, ifne, iflt, ifle, ifge, ifgt, ifpl, endc, else, equ, set, macro,
endm, csect, and endsect.

• Within a CSECT: rmb

• Within a PSECT: any 6809 instruction mnemonic, fcc, fdb,fcs, fcb, rzb, vsect, end-
sect, os9 and end.

• Within a VSECT: rmb, fcc, fdb, fcs, fcb, rzb and endsect.

E.6.1. PSECT Directive
The main difference between PSECT and MOD is that MOD sets up information for
OS-9 and PSECT sets up information for the linker (c.link in the C compiler).

PSECT {name,typelang,attrrev,edition,stacksize,entrypoint}

128

Appendix E. Relocating Macro Assembler Reference

name Up to 20 bytes (any printable character except
space or comma) for a name to be used by the
linker to identify this PSECT. This name need not
be distinct from all other PSECTs linked together,
but it helps to identify PSECTs the linker has a
problem with if the names are different.

typelang byte expression for the executable module
type/language byte. If this PSECT is not a
"mainline" (a module that has been designed to be
forked to) module this byte must be zero.

attrrev byte expression for executable module
attribute/revision byte.

edition byte expression for executable module edition
byte.

stacksize word expression estimating the amount of stack
storage required by this psect. The linker totals
this value in all PSECTs to appear in the
executable module and adds this value to any data
storage requirement for the entire program.

entrypoint word expression entrypoint offset for this PSECT.
If the PSECT is not a mainline odule, this should
be set to zero.

PSECT must have either no operand list or an operand list containing a name and five
expressions. If no operand list is provided, the PSECT name defaults to "program"
and all other expressions to zero. The can only be one PSECT per assembly language
file.

The PSECT directive initializes all counter orgs and marks the start of the program
module. No VSECT data reservations or object code may appear before or after the
PSECT/ENDSECT block.

Example:

psect myprog,Prgrm+Objct,Reent+1,Edit,0,progent
psect another_prog,0,0,0,0,0

E.6.2. VSECT Directive
VSECT {DP}

The VSECT directive causes RMA to change to the data location counters. If DP ap-
pears after VSECT, the direct page counters are used, otherwise the non-direct page
data is used. The RMB directive within this section reserves the specified number of
bytes in the appropiate uninitialized data section. The fcc, fdb, fcs, fcb and rzb (re-
serve zeroed bytes) directives place data into the appropiate initialized data section.
If an operand for fdb or fcb contains an external reference, this information is placed
in the external reference part of the ROF to be adjusted at link or execution time.
ENDSECT marks the end of the VSECT block. Any number of VSECT blocks can ap-
pear within a PSECT. Note, however, that the data location counters maintain their
values between one VSECT block and the next. Since the linker handles the actual
data allocation, there is no facility provided to adjust the data location counters.

129

Appendix E. Relocating Macro Assembler Reference

E.6.3. CSECT Directive
CSECT {expression}

The CSECT directive provides a means for assigning consecutive offsets to labels
without resorting to EQUs. If the expression is present, the CSECT base counter is set
to that value, otherwise it is set to zero.

E.6.4. RZB statement
RZB <expression>

The reserve zeroed bytes pseudo-instruction generates sequences of zero bytes in the
code or initialized data sections, the number of which is specified by the expression.

E.7. Comparison Between Assembly Programs for the Microware
Interactive Assember and the Relocating Macro Assembler

The following two program examples simply fork a BASIC09. The purpose of the
examples are to show some of the differences in the new relocating assembler. The
differences are apparent.

* this program forks a basic09
ifp1
use/defs/os9defs.a
endc

PRGRM equ $10
OBJCT equ $01

stk equ 200
psect rmatest,$11,$81,0,stk,entry

name fcs /basic09/
prm fcb $D
prmsize equ *-prm

entry leax name,pcr
leau prm,pcr
ldy #prmsize
lda #PRGRM+OBJCT
clrb
os9 F$FORK
os9 F$WAIT
os9 F$EXIT
endsect

E.7.1. Macro Interactive Assembler Source

ifp1
use defsfile
endc

mod siz,prnam,type,revs,start,size
prnam fcs /testshell/
type set prgm+objct
revs set reent+1

rmb 250
rmb 200

130

Appendix E. Relocating Macro Assembler Reference

name fcs /basic09/
prm fcb $D
prmsize equ *-prm
size equ .
start equ *

leax name,pcr
leau prm,pcr
ldy #prmsize
lda #PRGRM+OBJCT
clrb
os9 F$FORK
os9 F$WAIT
os9 F$EXIT
emod

siz equ

E.8. Introduction to Macros
In programming applications it is frequently necessary to use a repeated sequence
or pattern of instructions in many different places in a program. For example, sup-
pose a group of program statements creates a file a number of times throughout the
program. The code might look like the following statements:

leax name,pcr
lda $02
ldb $03
os9 I$CREATE

The sequence must be replicated each time that a new file is created. A macro assem-
bler eliminates the need for coding duplicate statement patterns by allowing the pro-
grammer to define macro instructions that are equivalent to longer code sequences.

When a macro is called, it is the same as calling a subrouting to perform a defined
function. A macro produces in-line code that is inserted into the normal flow of the
program beginning at the location of the macro call. The statements that may be gen-
erated by a macro are generally unrestricted, and the statements may contain substi-
tutable arguments.

E.9. Operations

E.9.1. Macro Definition
A macro definition consists of three sections:

<Label> MACRO /* macro header */
. /* <Label> is the name of the macro */
.
body /* macro body */
.
.
ENDM /* macro terminator */

1. The macro header - assigns a name to the macro
2. The body - contains the macro statements
3. The terminator - indicates the end of the macro

131

Appendix E. Relocating Macro Assembler Reference

A macro can have up to nine arguments (\1 to \9) in the operand fields. The argu-
ments are used to refer to symbols, registers, etc.

The following macro below could represent the file creation pattern:

CREATE MACRO
leax \1,pcr
lda $\2
ldb $\3
os9 I$CREATE
ENDM

Calls can be made to create files with different names, access modes, and attributes
as follows:

CREATE name2,02,03
CREATE name3,01,02

The above macro calls will produce the following in-line code:

leax name2, pcr
lda $02
ldb $03
os9 I$CREATE

leax name3, pcr
lda $01
ldb $02
os9 I$CREATE

If an argument has multiple parts, for example if d1,d2 is to be passed to the macro
called frud, it must be passed in double quotes. For example:

frud "0,s","2,s"

If frud looks like the following macro:

frud MACRO
\@ leau \1

ldd \2
beq \@
ENDM

The previous call to frud would expand the macro as follows:

@xxx leau 0,s
ldd 2,s
beq @xxx

Where "\@" is a label, and "xxx" would be replaced by a three digit number.

An argument may be declared null by leaving it blank in the macro call. For example,
if the macro instruction was "ldd \1ZZ\2", then the call to the macro with arguments
AA,BB would expand the instruction to "ldd AAZZBB", and the call with argument
,BB will expand it to "ldd ZZBB".

E.9.2. Nested Macro Calls
Macro calls may be nested, that is, the body of a macro definition may contain a call
to another macro. For example, the macro prepw could be defined as follows:

prepw MACRO
lda \1
getw

132

Appendix E. Relocating Macro Assembler Reference

ENDM

Getw is a macro call. The code to getw is substituted in-line at expansion time. How-
ever, the definition of a new macro within another is not permitted. Macro calls may
be nested up to eight deep.

E.9.3. Labels
Sometimes it is necessary to use labels within a macro. Labels are specified by “\@”.
Each time the macro is called, a unique label will be generated to avoid multiple def-
inition errors. Within the expanded code “\@” will take on the form “@xxx”, where
xxx will be a decimal number between 000 to 999.

More than one label may be specified in a macro by the addition of an extra char-
acter(s). For example, if two different labels are required in a macro, they can be
specified by "\@A" and "\@B". In the first expansion of te macro, the labels would
be "@001A" and "@001B", and in the second expansion they would be "@002A" and
"@002B". The extra characters may be appended before the "\" or after the "@".

E.9.4. Additional Pseudo-Instructions

\n

will return the number of arguments passed to the macro.

\L<num>

will return the length of the ith argument that is specified by <num>.

FAIL

Causes an error to be generated.

REPT <num>

will repeat an instruction or group of instructions <num> times. ENDR termi-
nates REPT.

133

	Microware C Compiler User's Guide
	Table of Contents
	Acknowledgements
	Differences between Versions 1.1 and 1.0
	Chapter 1. The C Compiler System
	1.1. Introduction
	1.2. The Language Implementation
	1.3. Differences from the K R Specification
	1.4. Enhancements and Extensions
	1.4.1. The Direct Storage Class
	1.4.2. Embedded Assembly Language
	1.4.3. Control Character Escape Sequences

	1.5. Implementationdependent Characteristics
	1.5.1. Data Representation and Storage Requirements
	1.5.2. Register Variables
	1.5.3. Access To Command Line Parameters

	1.6. System Calls and the Standard Library
	1.6.1. Operating System Calls
	1.6.2. The Standard Library

	1.7. Runtime Arithmetic Error Handling
	1.8. Achieving Maximum Program Performance
	1.8.1. Programming Considerations
	1.8.2. The Optimizer Pass
	1.8.3. The Profiler

	1.9. C Compiler Component Files and File Usage
	1.9.1. Temporary Files

	1.10. Running the Compiler
	1.11. Compiler Option Flags

	Chapter 2. Characteristics of Compiled Programs
	2.1. The Object Code Module
	2.1.1. Module Header
	2.1.2. Execution Offset
	2.1.3. Storage Size
	2.1.4. Module Name
	2.1.5. Information
	2.1.6. Executable Code
	2.1.7. String Literals
	2.1.8. Initializing Data and its Size
	2.1.9. Data References

	2.2. Memory Management
	2.2.1. Typical C Program Memory Map
	2.2.2. Compile Time Memory Allocation

	Chapter 3. C System Calls
	Abort
	Name
	Synopsis
	Description

	Abs
	Name
	Synopsis
	Description
	Caveats

	Access
	Name
	Synopsis
	Description
	Caveats
	Diagnostics

	Chain
	Name
	Synopsis
	Assembler Equivalent
	Description

	Chdir
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Chmod
	Name
	Synopsis
	Description
	Diagnostics
	See Also

	Chown
	Name
	Synopsis
	Description
	Diagnostics

	Close
	Name
	Synopsis
	Assembler Equivalent
	Description
	See Also

	Crc
	Name
	Synopsis
	Assembler Equivalent
	Description

	Creat
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Defdrive
	Name
	Synopsis
	Description
	Diagnostics

	Dup
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Exit
	Name
	Synopsis
	Assembler Equivalent
	Description
	See Also

	Getpid
	Name
	Synopsis
	Assembler Equivalent
	Description
	Description

	Getstat
	Name
	Synopsis
	Assembler Equivalent
	Description

	Getuid
	Name
	Synopsis
	Assembler Equivalent
	Description

	Intercept
	Name
	Synopsis
	Assembler Equivalent
	Description
	Caveats
	See Also

	Kill
	Name
	Synopsis
	Description
	Diagnostics
	See Also

	Lseek
	Name
	Synopsis
	Assembler Equivalent
	Description
	Caveats
	Diagnostics
	See Also

	Mknod
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Modload
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Munlink
	Name
	Synopsis
	Assembler Equivalent
	Description
	See Also

	os9
	Name
	Synopsis
	Description
	Diagnostics
	Program Example

	Open
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Os9fork
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics

	Pause
	Name
	Synopsis
	Assembler Equivalent
	Description
	See Also

	Prerr
	Name
	Synopsis
	Assembler Equivalent
	Description

	Read
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Sbrk
	Name
	Synopsis
	Description
	Diagnostics

	Setpr
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics

	Setime
	Name
	Synopsis
	Assembler Equivalent
	Description

	Setuid
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Setstat
	Name
	Synopsis
	Assembler Equivalent
	Description

	Signal
	Name
	Synopsis
	Description
	See Also

	Stacksize
	Name
	Synopsis
	Description
	See Also

	Strass
	Name
	Synopsis
	Description

	Tsleep
	Name
	Synopsis
	Assembler Equivalent
	Description

	Unlink
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Wait
	Name
	Synopsis
	Assembler Equivalent
	Description
	Caveats
	Diagnostics
	See Also

	Write
	Name
	Synopsis
	Assembler Equivalent
	Description
	Diagnostics
	See Also

	Chapter 4. C Standard Library
	Atof
	Name
	Synopsis
	Description
	Caveats

	Fclose
	Name
	Synopsis
	Description
	See Also
	Diagnostics

	Feof
	Name
	Synopsis
	Description
	Caveats
	See Also

	Findstr
	Name
	Synopsis
	Description
	Caveats
	See Also

	Fopen
	Name
	Synopsis
	Description
	Caveats
	Diagnostics
	See Also

	Fread
	Name
	Synopsis
	Description
	Diagnostics
	See Also

	Fseek
	Name
	Synopsis
	Description
	Diagnostics
	See Also

	Getc
	Name
	Synopsis
	Description
	Diagnostics
	See Also

	Gets
	Name
	Synopsis
	Description
	Caveats
	Diagnostics
	See Also

	Isalpha
	Name
	Synopsis
	Description

	L3tol
	Name
	Synopsis
	Description

	Longjmp
	Name
	Synopsis
	Description

	Malloc
	Name
	Synopsis
	Description
	Diagnostics

	Mktemp
	Name
	Synopsis
	Description
	See Also

	Printf
	Name
	Synopsis
	Description
	See Also

	Putc
	Name
	Synopsis
	Description
	Diagnostics
	See Also

	Puts
	Name
	Synopsis
	Description
	Caveats

	Qsort
	Name
	Synopsis
	Description

	Scanf
	Name
	Synopsis
	Description
	Caveats
	Diagnostics
	See Also

	Setbuf
	Name
	Synopsis
	Description
	See Also

	Sleep
	Name
	Synopsis
	Description

	Strcat
	Name
	Synopsis
	Description
	Caveats
	See Also

	System
	Name
	Synopsis
	Description
	See Also

	Toupper
	Name
	Synopsis
	Description

	Ungetc
	Name
	Synopsis
	Description
	Diagnostics
	See Also

	Appendix A. C Reference Manual
	A.1. Introduction
	A.2. Lexical Conventions
	A.2.1. Comments
	A.2.2. Identifiers (Names)
	A.2.3. Keywords
	A.2.4. Constants
	A.2.4.1. Integer Constants
	A.2.4.2. Explicit Long Constants
	A.2.4.3. Character Constants
	A.2.4.4. Floating Constants

	A.2.5. Strings
	A.2.6. Hardware Characteristics

	A.3. Syntax Notation
	A.4. What's in a name?
	A.5. Objects and lvalues
	A.6. Conversions
	A.6.1. Characters and Integers
	A.6.2. Float and Double
	A.6.3. Floating and Integral
	A.6.4. Pointers and Integers
	A.6.5. Unsigned
	A.6.6. Arithmetic Conversions

	A.7. Expressions
	A.7.1. Primary Expressions
	A.7.2. Unary Operators
	A.7.3. Multiplicative Operators
	A.7.4. Additive Operators
	A.7.5. Shift Operators
	A.7.6. Relational Operators
	A.7.7. Equality Operators
	A.7.8. Bitwise AND Operator
	A.7.9. Bitwise Exclusive OR Operator
	A.7.10. Bitwise Inclusive OR Operator
	A.7.11. Logical AND Operator
	A.7.12. Logical OR Operator
	A.7.13. Conditional Operator
	A.7.14. Assignment Operators
	A.7.15. Comma Operator

	A.8. Declarations
	A.8.1. Storage Class Specifiers
	A.8.2. Type Specifiers
	A.8.3. Declarators
	A.8.4. Meaning of Declarators
	A.8.5. Structure and Union Declarations
	A.8.6. Initialization
	A.8.7. Type Names
	A.8.8. Typedef

	A.9. Statements
	A.9.1. Expression Statement
	A.9.2. Compound Statement or Block
	A.9.3. Conditional Statement
	A.9.4. While Statement
	A.9.5. Do Statement
	A.9.6. For Statement
	A.9.7. Switch Statement
	A.9.8. Break Statement
	A.9.9. Continue Statement
	A.9.10. Return Statement
	A.9.11. Goto Statement
	A.9.12. Labeled Statement
	A.9.13. Null Statement

	A.10. External Definitions
	A.10.1. External Function Definitions
	A.10.2. External Data Definitions

	A.11. Scope Rules
	A.11.1. Lexical Scope
	A.11.2. Scope of Externals

	A.12. Compiler Control Lines
	A.12.1. Token Replacement
	A.12.2. File Inclusion
	A.12.3. Conditional Compilation
	A.12.4. Line Control

	A.13. Implicit Declarations
	A.14. Types Revisited
	A.14.1. Structures and Unions
	A.14.2. Functions
	A.14.3. Arrays, Pointers, and Subscripting
	A.14.4. Explicit Pointer Conversions

	A.15. Constant Expressions
	A.16. Portability Considerations
	A.17. Anachronisms
	A.18. Syntax Summary
	A.18.1. Expressions
	A.18.2. Declarations
	A.18.3. Statements
	A.18.4. External definitions
	A.18.5. Preprocessor

	Appendix B. Compiler Generated Error Messages
	Appendix C. Compiler Phase Command Lines
	C.1. cc1 cc2 (C executives)
	C.2. c.prep (C macro preprocessor)
	C.3. c.comp (Onepass compiler)
	C.4. c.pass (Pass One/Two of Twopass Compiler)
	C.5. c.opt (Assembly code optimizer)
	C.6. c.asm (Assembler)
	C.7. c.link (Linker)

	Appendix D. Interfacing to Basic09
	D.1. Example 1 Simple Integer Aritmetic Case
	D.2. Example 2 More Complex Integer Aritmetic Case
	D.3. Example 3 Simple String Manipulation
	D.4. Example 4 Quicksort
	D.5. Example 5 Floating Point
	D.6. Example 6 Matrix Elements

	Appendix E. Relocating Macro Assembler Reference
	E.1. Symbolic Names
	E.2. Label field
	E.3. Undefined names
	E.4. Listing format
	E.5. Section Location Counters
	E.6. Section Directives
	E.6.1. PSECT Directive
	E.6.2. VSECT Directive
	E.6.3. CSECT Directive
	E.6.4. RZB statement

	E.7. Comparison Between Assembly Programs for the Microware Interactive Assember and the Relocating Macro Assembler
	E.7.1. Macro Interactive Assembler Source

	E.8. Introduction to Macros
	E.9. Operations
	E.9.1. Macro Definition
	E.9.2. Nested Macro Calls
	E.9.3. Labels
	E.9.4. Additional PseudoInstructions

