
BASIC09

Programming Language Reference Manual

BASIC09: Programming Language Reference Manual
Copyright © 1983 by Dragon Data Ltd. and Microware Systems Corporation. All Rights
Reserved. Basic 09 is a trademark of Microware Systems Corporation and Motorola Inc.

Revision History

Revision F February 1983

Table of Contents
1. Introduction ...9

Comments on BASIC09 ...9
The History of BASIC09 ..10

2. Introduction to BASIC09 Programming...11
What is a Program?..11
A Simple BASIC09 Program ...12
Basic Programming Techniques: Loops and Arithmetic14
Listing Procedure Names..15
Requesting More Memory ..16
Storing and Recalling Programs ..16
How to Print Program Listings ..17
BASIC09’s Four Modes:...18
More about the Workspace... ..19
Where to go From Here? ...19

3. System Mode ...21
System Mode Commands ...22

4. Edit Mode ...29
Overview of Edit Commands...29
How the Editor Works...30
Line-Number Oriented Editing..30
String-Oriented Editing...31

Moving the Edit Pointer ..31
Inserting Lines...32
Deleting Lines ...32
Listing Lines ..32
Search: Finding Strings ..33
Change: String Substitution ..33

5. Execution Mode...35
Running Programs ...35
Execution Mode: Technically Speaking ..35

6. Debug Mode ..37
Overview of Debug Mode ..37
Debug Mode Commands..37
Debugging Techniques ..39
Debug Mode as a Desk Calculator ..40

7. Data Types, Variables and Data Structures..43
Why are there different data types?...43
Data Structures ...43

Atomic Data Types ...43
Type BYTE ...44
Type INTEGER..44
Type REAL...45
Type STRING...45
Type BOOLEAN ...46
Automatic Type Conversion ...46

Constants ...46
Numeric Constants...47
Boolean Constants ..47

v

String Constants..47
Variables ..48
Parameter Variables ...48
Arrays...49
Complex Data Types..49

8. Expressions, Operators, and Functions ..51
Evaluation of Expressions...51
Operators...51

Operator Precedence ..52
Functions ...53

9. Program Statements and Structure..57
Program Structure ..57
Line Numbers ...57
Assignment Statements ...57

LET Statement ...57
POKE Statement ...58

Control Statements...59
IF Statement: Type 1 ...59
IF Statement: Type 2 ...59
FOR/NEXT Statement ...60
WHILE..DO Statement...60
REPEAT..UNTIL Statement...61
LOOP and ENDLOOP/EXITIF and ENDEXIT Statements62
GOTO Statement...63
GOSUB/RETURN Statements..63
ON GOTO/GOSUB Statement ...64
ON ERROR GOTO Statement...64

Execution Statements...65
Run Statement ...65
Parameter Passing ..66
Calling External Procedures..66
KILL Statement ...67
CHAIN Statement ..68
SHELL Statement..69
END Statement..69
Stop Statement ..70
BYE Statement...70
ERROR Statement...70
PAUSE Statement..70
CHD and CHX Statements..71
DEG and RAD Statements ..71
BASE 0 and BASE 1 Statements..71
TRON and TROFF Statements..72
Comment Statements ...72

Declarative Statements ..72
DIM Statement ..73
PARAM Statement..75
TYPE Statement ..75

10. Input and Output Operations ..77
Files and Unified Input/Output ..77
I/O Paths ...77

INPUT Statement..78

vi

PRINT Statement ..79
OPEN Statement ...80
CREATE Statement...81
Close Statement...82
DELETE Statement ...82
SEEK Statement...83
WRITE Statement ...83
READ Statement ...84
GET/PUT Statement ..84

Internal Data Statements ...87
DATA/READ/RESTORE Statements ...87

Formatted Output: The Print Using Statement..88
Real Format..89
Exponential Format ..89
Integer Format...90
Hexadecimal Format ..90
String Format...91
Boolean Format ...92
Control Specifications ..92
Repeat Groups...92

11. Program Optimization ...93
General Execution Performance of BASIC09 ...93
Optimum Use of Numeric Data Types..93
Looping Quickly...94
Optimum Use of Arrays and Data Structures..94
The PACK Command ..95
Eliminating Constant Expressions and Sub-Expressions.....................................95
Fast Input and Output Functions...95
Professional Programming Techniques...95

A. Sample Programs ...97
B. Quick Reference ...109
C. BASIC09 Error Codes ..113
D. The BASIC09 Graphics Interface Module..115

vii

viii

Chapter 1. Introduction

Comments on BASIC09
BASIC09 is an enhanced structured Basic language programming system specially
created for the 6809 Advanced Microprocessor used by the Dragon Computer. In ad-
dition to the standard BASIC language statements and functions, BASIC09 includes
many of the useful elements of the PASCAL programming language so that programs
can be modular, well-structured, and use sophisticated data structures. It also permits
full access to almost all of the OS-9 Operating System commands and functions so it
can be used as a systems programming language. These features make BASIC09 an
ideal language for many applications: scientific, business, industrial control, educa-
tion and more.

BASIC09 is unusual in that it is an Interactive Compiler that has the best of both kinds
of language system: it gives the fast execution speed typical of compiler languages
plus the ease of use and memory space efficiency typical of interpreter languages.
BASIC09 is a complete PROGRAMMING SYSTEM that includes a powerful text ed-
itor, multi-pass compiler, run-time interpreter, high-level interactive debugger, and a
system executive. Each of these components was carefully integrated to give the user
a friendly, highly interactive programming resource. that provides all the tools and
helpful "extra" facilities needed for fast, accurate creation and testing of structured
programs.

BASIC09 Features

• Structured, recursive BASIC with Pascal-type enhancements:

—allows multiple, independent, named procedures

—procedures called by name with parameters

—multi-character, upper or lower case identifiers

—variables and line numbers local to procedures

—line numbers optional

—automatic linkage to ROM or RAM "library" procedures

—PACK command compacts program and provides security

—PRINT USING with FORTRAN-like format specifications

• Extended data structures:

—Five Basic data types: BYTE, INTEGER, REAL, BOOLEAN, and STRING

—One, two, or three dimensional arrays

—User-defined complex structures and data types

• Extended Control Structures (with Unique Closure Elements):

• Graphics Interface Module for Access to Dragon Computer Colour Graphics Func-
tions

• Powerful interactive debugging and editing features:

9

Chapter 1. Introduction

—Integral, full-featured text editor

—Syntax error check upon line entry and procedure compile

—Trace mode reproduces original source statements

—Renumber command for line numbered procedures

• High-speed, high-accuracy math:

—9 decimal-digit 40 bit binary floating point

—Full set of transcendentals (SIN, ASN, ACS, LOG, etc.)

The History of BASIC09
BASIC09 was conceived in 1978 as a high-performance programming language to
demonstrate the capabilities of the 6809 microprocessor to efficiently run high-level
languages. BASIC09 was developed at the same time as the 6809 under the auspices
of the architects of the 6809. The project covered almost two years, and incorpo-
rated the results of research in such areas as interactive compilation, fast floating
point arithmetic algorithms, storage management, high-level symbolic debugging,
and structured language design. These innovations give BASIC09 its speed, power,
and unique flavor.

BASIC09 was commissioned by Motorola, Inc., Austin, Texas, and developed by Mi-
croware Systems Corporation, Des Moines, Iowa. Principal designers of BASIC09
were Larry Crane, Robert Doggett, Ken Kaplan, and Terry Ritter. The first release
was in February, 1980.

Excellent feedback, thoughtful suggestions, and carefully documented bug reports
from BASIC09 users all over the world have been invaluable to the designers in their
efforts to achieve the degree of sophistication and reliability BASIC09 has today.

10

Chapter 2. Introduction to BASIC09 Programming

This section is intended for persons who have not previously written computer pro-
grams. If you are familiar with programming in general or BASIC programming
specifically, this section can give you a "feel" for the BASIC09 interactive environ-
ment.

What is a Program?
A computer works something like a pocket calulator. With a calculator you push
a button, some calculation occurs, and the result is displayed. On some calculators
you can write a program which is just a list of the buttons you want pushed, in the
order you want them pushed. This is very similar to a computer program, but most
computer languages use command names instead of buttons.

To get results from a computer, you must first put into the computer the list of com-
mands you want executed in the order you want them executed. Each command
will mean "do this thing" or "do that thing", but the computer only has certain com-
mands which it will understand. A computer can do things like "add" or "save the
result into memory". Typing "get me a taco" to a computer won’t get it; similarly, on
a calculator you can’t push buttons which aren’t there. After you have stored a list
of commands into the computer, you can tell it to perform those operations. This is
like actually pushing the buttons on a hand calculator. Then, if you remembered to
have the compuer display your results, you get to see them. Generaly, a computer
does not automatically display results like a hand calculator. More calculations occur
in a computer then in a calculator, and displaying all these results would simply be
overwhelming.

You enter a program into a computer by using the computer itself as a "text editor",
to store the commands you type in. Some editors allow you to enter any text you
want. Other editors will only store valid computer commands. Even if the computer
does store all the text you type in, it can only execute those commands it knows. If
during program execution, BASIC09 finds a word which does not correspond to a
command it will probably stop and print out an "error message". Other editors check
each command as you enter it (usually after the carriage-return ending each line) and
print error messages immediately for invalid commands. After typing in your list of
commands, there are ways to display that list, to modify the commands you have
typed in, and to insert others. But simpy entering a computer program does not get
results any more than thinking which buttons to push will get results on a calculator.
You store your program by typing it into a computer, but no results are available until
after you start the program running.

Even though programming is conceptually simple, it is easy to misspell commands
which BASIC09 will not interpret correctly. Unlike humans, BASIC09 does not infer
anything: Every command must be perfectly spelled and punctuated or it is wrong.
Even after spelling errors are eliminated, it is likely that the sequence of commands
you have entered will not do the job you wanted it to do. The meaning of the program
to BASIC09 is often quite different than was intended by the programmer, biut good
intentions just don’t push the right buttons. After you get the program to run without
obvious error, you must test the program with sample input and see that it produces
results which are known correct. If the results are incorrect, the program must be
modified and tested until it does produce correct results. This is known as testing
and debugging. Computer malfunctions are rare, and if the computer works to store
the program, it is probably working perfectly. If the program does not work, you need

11

Chapter 2. Introduction to BASIC09 Programming

to puzzle out how the computer is doing something hich you didn’t realize that you
told it to do. Programming can be frustrating, but if you enter the right commands,
the computer will do the right things for you.

A Simple BASIC09 Program
Probably the easiest way to explain programming is by example. This simple pro-
gram sometimes keeps kids happy for hours. First, the program asks the user for
his name. Then the computer types out "Hi", then the name, then "see you later". This
may not seem like much, but it is great fun to type in things which are not your name,
and see if they will be printed out. They will, of course.

When you turn on the BASIC09 computer it will print some heading information. If
the prompt is "OS9: ", enter the "basic09" (and a carriage-return) to get to the prompt
"B:". When you have the prompt "B:", it means that the system is in the BASIC09
"command mode". While in the command mode, you can do several things, like:
list, kill, or create programs (called "procedures" in BASIC09). BASIC09 lets you keep
several different programs in memory at the same time. Each procedure is identified
by a name you give it when you create the procedure.

To create a new procedure you command the system to enter the "edit mode" by
typing a simpl "e" (in upper or lower case) and a carriage-return (the ENTER or RE-
TURN key). The Editor lets you enter or change programs and actually checks for
many common errors as you type in your program. This automatic checking feature
is one of the nicest things about BASIC09. Because it’s always "looking over your
shoulder" to catch mistakes, it saves a lot of debugging time! If you’re not 100% sure
about how something works - you can go ahead and try it instead of digging through
this manual. If you guess wrong BASIC09 will usually show you where and why.

Because you did not specify a particular procedure name, BASIC09 will automati-
cally select the name "PROGRAM" for you, and will respond by printing out "PRO-
CEDURE PROGRAM"; this means that you will be editing a procedure which is
named PROGRAM. Later you will see that you can enter many different procedures
and give them different names (just type the name you want to use for the program
after the "e").

The computer output so far is a follows:

B:e
PROCEDURE PROGRAM
*
E:

The asterisk (*) indicates the "current edit line" in the procedure being edited. In this
case the current line is empty since you have not yet entered anything. The asterisk
is handy, since you will be moving back and forth between different lines to edit
them. Later you will be "opening" existing procedures for modification, and the first
line will be displayed automatically, helping identify that you are editing the correct
program.

When BASIC09 responds with the edit prompt "E:", it is in the edit mode. Now you
can enter "edit commands" which help us enter the computer program. While in edit
mode, BASIC09 ALWAYS TAKES THE FIRST CHARACTER OF EVERY LINE AS AN
EDIT COMMAND. Some of the basic edit commands are:

12

Chapter 2. Introduction to BASIC09 Programming

<space> <program statement> <cr> insert line
? <cr> go to next line down (just <cr> also does the same)
- <cr> move back to previous line
L <cr> list current line
d <cr> delete current line

The most-important edit command is the (invisible) space character; this means "save
the following line of text", The "space" command is the way most text is entered into
the system. you must type an edit command at the start of each line. If a line is to
be entered, you must type a space before the rest of the line. If you forget to type an
edit command, BASIC09 will respond with "WHAT?". Another useful edit command
is "L*" (or "l*", since the editor accepts either upper or lower case) which will display
the whole procedure. This allows you to watch the procedure develop as lines are
entered.

You use the "space" command to enter the following line:

E: print "type your name"
*

When BASIC09 executes procedure PROGRAM, this line will tell it to print on the
screen all of the characters between the quotes.

As mentioned before, BASIC09 checks for errors at the end of each line and again
when the edit is finished. These errors are, in general, anything BASIC09 cannot iden-
tify or things that don’t conform to the rules of the language. An error could be a bad
character, mismatched parenthesis, or one of many other things. BASIC09 will print
out an "error code" to identify the error and print an up arrow character under the
place in the line where it detected the error. The error codes are listed at the end of
this manual. If the error was detected at the end of the edit session, the I-code loca-
tion of the error will also be printed. This cryptic information is all BASIC09 knows
about the problem, hopefully, it will help you to find and fix the error.

In the same way that you entered the first line, enter the following lines. Remember
that the first character entered must be a space to get BASIC09 to save the rest of the
line. Example:

E: input name$
*
E: print "Hi ";name$;", see you later."
*
E: end
*

The second line ("input name$"), when executed, commands BASIC09 to wait for a
line of text to come in from the keyboard (this will happen after the user reads the
message printed out in the first line). BASIC09 will accumulate text from the key-
board character-by-character until a carriage-return ends the line. This text is placed
in memory corresponding to the variable "name$". The dollar-sign ($) on the end of
the variable tells BASIC09 that you want to store a sequence of characters as opposed
to a number.

The third line of procedure PROGRAM (print "Hi ";name$;", see you later."), starts out
like the first line. The command "print" causes BASIC09 to print out the various val-
ues which come after it. When this line is executed, the characters H, i, and "space" are
printed out since the are enclosed in double-quotes. Next, without additional spaces,
BASIC09 prints out the line which was typed in by the user and saved in the memory

13

Chapter 2. Introduction to BASIC09 Programming

corresponding to "name$" and prints out " see you later". When a PRINT statement
contains multiple values, it will print them out one after the other. If the separator is a
comma, BASIC09 will move to the next 16-column "tab stop" before printing the next
value. However, if the separator between print values is a semicolon, absolutely no
space will separate the values. The last line of the procedure ("END") tells BASIC09
to stop executing the program and return to the command mode (B:). You have not
yet EXECUTED the procedure, you are just EDITING. If you type in l* the whole
program will be listed, as follows:

E:l*
PROCEDURE PROGRAM

0000 PRINT "type your name"
0012 INPUT name$
0017 PRINT "Hi ";name$;", see you later."
0035 END

*
E:

Notice that the editor has added some information which you did not type in. You
can use this listing to show exactly what to type in to run this program, but the editor
only wants the relevant information.

The numbers to the left are "I-code addresses". These are the actual memory locations
relative to the start of the procedure where each line begins. These numbers may
look strange because they are in hexadecimal (base 16). These values are important,
since the compiler may find errors at some I-code location and will try to convey that
information it has to the programmer. I-code addresses are supplied automatically
by BASIC09.

The space between the "I-code addresses" and the beginning of the program line is
reserved for "line numbers". Line numbers are required in many versions of BASIC
(although not in BASIC09). Notice that although the program was typed in lower
case some words are printed in upper case. BASIC09 identifies valid command "key-
words" and converts them to upper case automatically.

Now let’s run it. First type "q" to quit the editor. We are nowback in "command mode"
(B:). Now type "run". BASIC09 remembers the procedure edited (PROGRAM) and
starts to execute it.

E:q
READY
B:run
type your name
? tex
Hi tex, see you later.
READY
B:

The question mark (?) is the normal input prompt to tell the user that the program is
waiting for input.

This program is extremely simple, but younger kids can get grat fun from it. Its action
is especially amusing to young people who are learning a computer language for the
first time because a machine is "responding" to them, and because the machine is too
easily "fooled" if you do not type in a real name.

14

Chapter 2. Introduction to BASIC09 Programming

Basic Programming Techniques: Loops and Arithmetic
Another simple program that most of us can identify with is a program to print out
multiplication tables.

PROCEDURE multable
FOR i=1 TO 9

FOR j=1 TO 9
PRINT i*j; TAB(5*j);

NEXT j
NEXT i

First, open the editor by typing "e multable", as follows:

B: e multable
PROCEDURE multable
*
E:

Next, type in the program line-by-line staring with "FOR i=1 TO 9" (lower-case is
perfectly fine). If you loose your way, type "L*" to see where you are. This will display
the entire procedure and put an asterisk at the left of the current line. If you make a
mistake, use "+" or "-" to mode to that line, use "d" to delete the line, and use the space
command to enter the line over. Make sure that there are no errors and then type "q".
When you have the program running, try adding a statement before "FOR i=1 TO 9"
as follows: "DIM i,j:INTEGER".

The FOR i=1 TO 9 and NEXT i constitute the start and end of a control structure
or "loop". A control structure is used to cause repeated or conditional execution of
the statement(s) it surrounds. A control structure usually has one entry at the top
and one exit at the bottom. In this way, the entire structure take on the properties
of a single statement. The beginning statement of the FOR...NEXT structure (FOR...)
provides a "loop initialization", places the value 1 in the storage called "i", and sets up
the operation of the following NEXT (every FOR must have a NEXT). When "NEXT
i" is executed, the value in "i" is increased by 1 (which is the default STEP size) and
compared to the value 9 (which is the ending value for this loop). If the resulting "i"
is less than or equal to 9, the statement(s) following that FOR... is (are) executed.

Loops can be "nested" to execute the enclosed statements even more times. For exam-
ple, the PRINT statement in "multable" is executed 81 times; once for each of 9 values
of "j" and this number (9 times) for each of 9 values of "i". The ability to tremendously
increase the number of times some code is executed is at the heart of both computer
programming and computer errors. It means that a vary small portion of a program
can often be made to do the vast majority of the work. But a few remaining special
cases may require individual handling and may consume more programming and
code than that which "usually" works. Unfortunately, "usually" is not sufficient. A
special case which occurs once in a thousand times may occur once a second, and
if the error stops the program, further processing of normal values also stops. Ex-
perience has indicated that the programmer should know what is happening in the
first and second pass, and the next-to-the-last and last pass through each loop in the
program.

15

Chapter 2. Introduction to BASIC09 Programming

Listing Procedure Names
The "DIR" command causes BASIC09 to display the names and sizes of all procedures
in memory. This command is used so frequently that there is a quick shorthand for
DIR: a simple <cr> when in command mode does the same thing. You will see a table
of all procedure names and two numbers next to each name. The first column, "proc
size", is the size of the corresponding procedure. The "data size" column shows the
amount of memory that the procedure requires for its variables. On the last line this
command shows the amount of free bytes of workspace memory remaining. You can
use this information to estimate how much memory your program needs to run. You
must have at least as much free memory as the data size of the procedure(s) to be run.
If a data size number is followed by a question mark, you need more memory.

Requesting More Memory
BASIC09 automatically get 4K of workspace memory from OS-9 when it starts up.
There is almost always more than this available, but BASIC09 does not grab it all so
other tasks running on your computer can have memory too. If you are not multi-
tasking and need more memory, the MEM command can get it if available. Just type
MEM and the amount of memory you want. Depending on your computer and how
it is configured, you can usually get at least 24K in OS-9 Level One Systems or 40K in
OS-9 Level Two systems. For example:

MEM 20000

requests 20.000 (20K) bytes of memory. BASIC09 will always round the amount you
request up to the next highest multiple of 256 bytes. If MEM responds with "WHAT?",
this means that much memory is not available. There is another convenient way to do
the same thing when you first call up BASIC09 from OS-9. OS-9 has a "#" memory size
option on command lines that let you specify how much memory to give the program.
To call BASIC09 with 16K of memory to start with, you can type:

OS9: basic #16k

Storing and Recalling Programs
Nobody wants to retype a whole program every time it is to be run. Two commands,
SAVE and LOAD, are used to store programs and recall previously "SAVEd" pro-
grams to or from OS-9 disk files. The simples way to use SAVE is by itself. It will
store the procedure last edited or run on a disk file having the same name. For exam-
ple:

B: save

If our procedure name was the default name "PROGRAM", BASIC09 will create a file
called "PROGRAM" to hold it. OS-9 won’t let you have two files of the same name
because unique names are necesary to identify the specific file you want. Therefore if
a file called "PROGRAM" already exists, BASIC09 will ask you:

Overwrite?

16

Chapter 2. Introduction to BASIC09 Programming

If you respond "Y" for YES, it will replace the file previously stored on that file with
the program to be saved. This is OK if what you want to save is a never version of the
same program. But if not you will permanently erase another program you may have
wanted to keep. If this is the case answer "N" for NO. Fortunately, there is a simple
way to store the procedure on a file using a different name: just type SAVE, a ">", and
a different file name of your choice. The file can consist of any combination of up to
thirty-one letters, numbers, periods, or underscores ("_"). The only restriction is that
the name must start with a letter A-Z or a-z. For example:

save >newprogram5

will save the program on a file called "newprogram5". There are several useful vari-
ations of the SAVE command that let you save various combinations of programs on
the same file. See the SAVE command description for more information. You should
also read Chapter 2 of the "OS-9 Users Manual" to learn about the OS-9 commands
that deal with disk files.

If you exit from BASIC09, it will not automatically save your programs. You must
make sure to save them before you quit, or they will be lost unless the were saved at
some time before!

The LOAD command, as it’s name implies, reads in a previously save program from
a file. You must give the name of the file with the command. For example:

load program

If you just started BASIC09 and have not created any procedures, the command is
very straightforward. As the procedure(s) stored in the file are loaded, BASIC09 dis-
plays their name(s) as they are brought in. Once the program is loaded, you can edit
and/or run it. But if you have a procedure in BASIC09 that has the same name as
a procedure stored in the file, BASIC09 will replace it with the new version loaded
from the file. If this kind of conflict exists you could loose your old program, so be
sure to save or RENAME it before loading a new one (remember that BASIC09 can
keep several procedures in memory at the same time as long as they have different
names). If you want to permanently erase all other procedures before loading new
ones, you can type:

B: kill*

This tells BASIC09 to "kill" all procedures in memory and has the same effect as com-
pletely resetting BASIC09.

How to Print Program Listings
If your computer is equipped with a printer, you will want to make hard-copy listings
of your programs. This is easy to do - just type:

B: LIST* /p

This tells BASIC09 to LIST all procedures in memory to the output device "/p" which
is the printer device name in most OS-9 systems. Like the SAVE command, LIST has
several useful variations. If you want to list just one procedure (if there are more than
on in memory) you can type:

17

Chapter 2. Introduction to BASIC09 Programming

B: LIST procedurename >/P

If you want, you can put two or more procedure names (seperated by spaces) before
the semicolon and those specific procedures will be listed.

Notice that if you omit the "/p" or ">/p" from the commands above, the programs
will be listed on your display instead of the printer. This is the same as the "L*" com-
mand in Edit Mode. You will also notice that the listing will be automatically "pretty-
printed", e.g. program levels within loops are indented for easy reading.

BASIC09’s Four Modes:
At any given time, BASIC09 is in one of four modes:

SYSTEM MODE: Used for executing system commands.
EDIT MODE: Used for creating/editing procedures.
EXECUTION MODE: Used for running procedures.
DEBUG MODE: Used for testing procedures for errors.

So far, you have been exposed to System Mode (SAVE, LOAD, etc.), Edit Mode (the
editor), and Execution Mode (RUN). A section of this manual is devoted to each
mode. The chart below shows how various commands in each mode causes changes
to other modes.

OS-9 SYSTEM MODE EDIT MODE
---------- ------------ ------------
				+
		$		-
	<-----+-- <eof>		<cr>	
	<-----+--BYE		<line#>	
		CHD		<space>
		CHX		c
		DIR		d
		EDIT----+------->	l	
		KILL	<-------+-q	
		LIST		r

BASIC09-+----->	LOAD		s		TRON
		MEM	------------	TROFF	
		PACK	<--------------------------+ END or Q		
		RENAME		DEG/RAD	
		RUN-----+-------> ------------	STATE		
		SAVE	<-------+-END		$
			<-------+- <CTRL Q>		BREAK
	------------ <-------+-STOP	<-----+-CONT			
BASIC09		PAUSE----+----->	DIR		
AUTORUN-+-------------------------->	ERROR----+----->	LET			
		<CTRL C>-+----->	LIST		
	<--------------------------+-BYE		PRINT		
		PROGRAM	<-----+-STEP		
---------- ------------ ------------

18

Chapter 2. Introduction to BASIC09 Programming

EXECUTION MODE DEBUG MODE

Figure 2-1. BASIC09 Mode Change Possibilities

More about the Workspace...
The workspace concept is important because BASIC09 and OS-9 are both highly mod-
ular systems, and the workspace is a way to logically group a set of procedures (i.e.
modules) which are applicable to a particular line of study or development. Modular
software development lets the programmer divide a large and complex project into
smaller, more manageable, and individually testable sections. Modularity also lets
programmers accumulate and use libraries of commonly used routines.

As the software is written and debugged, BASIC09 makes it easy to deal with the
procedures that comprise an overall project, either individually or as a group. For ex-
ample, you can save all procedures on the wrkspace to a single mass stoarage file or
load a file containing multiple procedures. Usually all procedures associated witha
project exists inside the workspace. However, you can also call library procedures
which are "outside" the workspace in OS-9 memory module format. The library pro-
cedures can be written in BASIC09 or machine language, can be in RAM or ROM
memory, and can even be shared by several users.

BASIC09 always reserves approximately 1.2K bytes of the workspace for internal
use. All remaining space is used for storage of procedures and for procedure variable
storage during execution. BASIC09 will not run a procedure if there is not enough
space for variables. If you run out of workspace area, you can use the MEM com-
mand to enlarge the workspace or you can kill procedures in the workspace that
are not needed. The "MEM" command can be used at any time to change the size of
the workspace. The size of the workspace can be increased (subject to availability of
free memory) or decreased (but not below the minimal amount needed to store the
present workspace).

Where to go From Here?
A good way to learn BASIC09 is to use it! Try typing in and running some of the ex-
ample programs in the back of the book. Look at and study the function of each pro-
gram statement. Read the chapters on the EDIT and DEBUG modes and experiment
with more advanced commands. Also, BASIC09 and the OS-9 Operating System are
so intimately connected, a basic understanding of OS-9 is important. See Chapter 2
of the "OS-9 User’s Manual".

19

Chapter 2. Introduction to BASIC09 Programming

20

Chapter 3. System Mode

System mode includes commands to save, load, examine procedures; commands to
interact with OS-9; and other commands to control the workspace environment. A
complete list of system commands is given below.

Table 3-1. System Mode Commands

$ CHX EDIT LOAD RENAME

BYE DIR KILL MEM RUN

CHD E LIST PACK SAVE

The system commands are processed by the BASIC09 "command interpreter" which
always identifies itself with the "B:" prompt. It is entered automatically when BA-
SIC09 is started up and whenever you exit any other mode. Commands can be en-
tered in either upper or lower-case letters. Commands such as DIR, MEM, "$", and
BYE don’t operate on specific procedures, but may have optional or required parame-
ters. Other commands (such as SAVE, LOAD, PACK, KILL, and LIST) can operate on
a specific procedure or on ALL procedures within the workspace. If the command is
used with a specific procedure name, the command is applied to only that procedure.
For example:

list pete

will display the procedure named "pete". The asterisk is a special name that means
"all procedures in the workspace". Therefore, if the command is given follwed by an
asterisk it is applied to all procedures. For example:

list*

will display all of the procedures in the workspace.

If the command is given without any name at all, the "current" working procedure
is used. This means the name of the procedure last given in another command. The
DIR command prints an asterisk before its name so it can be found at any time. If you
have not yet given a name in any command, the name "PROGRAM" is automatically
used. Some commands that require a file name as well as (one or more) procedure
names require that a ">" precede the file name so it is not mistaken for a procedure
name. If you omit the file name, the name of the (first) procedure is used instead. In
this manual, the phrase file name means an OS-9 "pathlist" which can describe either
a file or device.

Here are some examples:

SAVE tom bill >myfile
SAVE* big_file

or

SAVE tic tac toe

21

Chapter 3. System Mode

which is exactly equivalent to

SAVE tic,tac,toe >tic

Another class of commands use only one procedure name, or the current working
name if a name is omitted. These commands change the mode of BASIC09 by exiting
the command mode and entering another mode. These commands are:

RUN which enters Execution Mode to run a procedure

EDIT which enters Edit Mode to create or change a procedure

The one other mode, Debug Mode, cannot be entered directly from the system mode
— more on this later.

Syntax Notation Used in System Command Descriptions
Individual descriptions of the available commands in each mode follow. In order to
precisely describe their formats, the syntax notation shown below is used.

[] things in brackets are optional.

{ } things in braces can be optionally repeated.

<procname> means a procedure name

<pathlist> An OS-9 file name

<number> A decimal or hex number

System Mode Commands

$ [<text>] ("Shell" Command)

This command calls the OS-9 Shell command interpreter to process an OS-9 com-
mand or to run another program. Running the OS-9 command does not cause BA-
SIC09 or its workspace to be disturbed.

If the "$" is followed by text, the Shell is called to process the text as a single OS-9
command line. After the command is executed, BASIC09 is immediately re-entered.

If no text is specified, BASIC09 is suspended, and the OS-9 Shell is called to process
multiple command lines individually entered from the keyboard. Control is returned
to BASIC09 when an end-of-file character (usually ESCAPE) is entered. The contents
of the BASIC09 workspace is not affected. This is a convenient way to temporarily
leave BASIC09 to manipulate files or perform other housekeeping tasks.

This command is the "gateway" to OS-9 from inside BASIC09. It allows access to any
OS-9 command or to other programs. It also permits creation of concurrent processes
and other real-time functions.

Examples:

22

Chapter 3. System Mode

B: $copy file1 file2 Calls the OS-9 copy command
B: $asm sourcefile& Calls the assembler as a background task
B: $basic09 fourier(20)& Starts another concurrent BASIC09 program

BYE (or ESCAPE character)

Exits BASIC09 and returns to OS-9 or the program that called BASIC09. Any proce-
dures in the workspace are lost if not previously saved. The escape key (technically
speaking, an end-of-file character condition on BASIC09’s standard input path) does
the same thing.

CHD <pathlist> or CHX <pathlist>

Changes the current OS-9 user Data or Execution Directory to the specified pathlist
which must be a directory file. BASIC09 uses the Data Directory to LOAD or SAVE
procedures. The Execution Directory is used to PACK or auto-load packed modules.

Example:

CHD /d1/joe/games

DIR [<pathlist>]

Displays the name, size, and variable storage requirement of each procedure
presently in the workspace. The current working procedure has an asterisk before
its name. All packed procedures have a dash before their name (see PACK). The
available free memory within the workspace is also given. If a pathlist is specified,
output is directed to that file or device.

A question mark next to a data storage size means the workspace does not have
enough free memory to run that procedure.

Note: This command should not be confused with the OS-9 "DIR" command. They
have completely different functions.

EDIT [<procname>]
E [<procname>]

Exits command mode and enters the text editor/compiler mode. If the specified pro-
cedure does not exist, a new one is created. See the Chapter 4 for a complete descrip-
tion of how edit mode works.

Examples:

E newprog
EDIT printreport

23

Chapter 3. System Mode

KILL [<procname> {,<procname>}]
KILL*

Erases the procedure(s) specified. KILL* clears the entire workspace. The process may
take some time if there are many procedures in the workspace.

Examples:

kill formulas
kill prog1, prog2, prog7

LIST [<procname> {,<procname>}] [> <pathlist>]
LIST* [<pathlist>]

Prints a formatted "pretty printed" listing of one or more procedures. The listing in-
cludes the relative I-code storage addresses in hexadecimal format in the first column.
The second column is reserved for program line numbers (if line numbers are used).
If a pathlist is given, the listing is output to that file or device. This option is com-
monly used to print hard-copy listings of programs. The LIST, SAVE and PACK com-
mands all have identical syntax, except that LIST prints on the OS-9 standard error
path (#2) if no pathlist is given. The files produced are formatted differently, but the
function is similar.

Important: If an "*" is used with LIST, SAVE or PACK, the file name immediately follows
WITHOUT a greater-than sign ">" before it!

Examples:

list* /p
list prog2,prog3 >/p
list prog5 >temp

LOAD <pathlist>

Loads all procedures from the specified file into the workspace. As procedures are
loaded, their names are displayed. If any of the procedures being loaded have the
same name as a procedure already in the workspace, the existing procedures are
erased and replaced with the procedure being loaded.

If the workspace fills up before the last procedure in the file is loaded, an error (#32)
is given. In this case, not all procedures may have been loaded, and the one being
loaded when the workspace became full may not be completely loaded. You should
KILL the last procedure, use the MEM command to get more memory or KILL un-
necessary procedure(s) to free up space, and then LOAD the file again.

Example:

load quadratics

24

Chapter 3. System Mode

MEM
MEM [<number>]

MEM used without a number displays the present total workspace size in (decimal)
bytes. If a number is given, BASIC09 asks OS-9 to expand or contract the workspace
to that size. A hex value can be used if preceded by a dollar sign. If MEM responds
with What?, you either asked for more memory than is available, tried to give back
too much memory (there has to be enough to store all procedures in the workspace),
or gave an invalid number.

Example:

MEM 18000

PACK [<procname> {,<procname>}] [> <pathlist>]
PACK* [<pathlist>]

This command causes an extra compiler pass on the procedure(s) specified, which
removes names, line numbers, non-executable statements, etc. The result is a smaller,
faster procedure(s) that CANNOT be edited or debugged but can be executed by
BASIC09 or by the BASIC09 run-time-only program called "RunB". If a pathlist is not
given, the name of the first procedure in the list will be used as a default pathname.
The procedure is written to the file/device specified in OS-9 memory module format
suitable for loading in ROM or RAM outside the workspace. THE RESULTING FILE
CANNOT BE LOADED INTO THE WORKSPACE LATER ON, so you should always
perform a regular SAVE before PACKing a procedure!

BASIC09 will automatically load the packed procedure when you try to run it later.
Here is an example sequence that demonstrates packing a procedure:

pack sort packs procedure sort and creates a file

kill sort kills procedure inside the workspace

run sort run (sort is loaded outside of the workspace)

kill sort done; delete "sort" from outside memory

The last step (kill) does not have to be done immediately if you will use the procedure
again later, but you should kill it when you are done so its memory can be used for
other purposes.

Examples:

pack proc1,proc2 >packed.programs

pack* packedfile

RENAME <procname>,<new procname>

25

Chapter 3. System Mode

Changes the name of a procedure. Can be used to allow two copies of the same pro-
cedure in the workspace under different names.

Example:

rename thisproc thatproc

RUN [<procname> [(<expr> , {<expr>})]]

Runs the procedure specified. Technically speaking, BASIC09 then leaves Command
mode and enters Execution mode.

A parameter list can be used to pass expected parameters to the procedure in the
same way a RUN statement inside a procedure calls another procedure except for
the restriction that all parameters must be constants or expressions without variables.
See the PARAM statement description. Assembly language procedures cannot be run
from command mode.

The procedure called can be normal or "packed". If the procedure is not found inside
BASIC09’s workspace, BASIC09 will call OS-9 to attempt to LINK to an external (out-
side the workspace) module. If this fails, BASIC09 attempts to LOAD the procedure
from a file of the same name.

Examples:

run getdata

run invert("the string to be inverted")

run power(12,354.06)

run power($32, sin(pi/2))

SAVE [<procname> { <procname>} [> <pathlist>]]
SAVE* [<pathlist>]

Writes the procedure(s) (or all procedures) to an output file or device in source for-
mat. SAVE is similar to the LIST command except the output is not formatted and
I-code addresses are not included. If a pathlist is not specified, it defaults to the name
of the first procedure listed.

If a file of the same name already exists, SAVE will prompt with:

rewrite?

You may answer "Y" for yes which causes the existing file to be rewritten with the
new procedure(s); or "N" to cancel the SAVE command.

Examples:

save proc2 proc3 proc4 >monday.work

26

Chapter 3. System Mode

save* newprogram

save

save >testprogram

27

Chapter 3. System Mode

28

Chapter 4. Edit Mode

Edit Mode (also called "The Editor") is used to enter or modify BASIC09 procedures.
It is entered from Command Mode by the EDIT (or E) command. As soon as Edit
Mode is entered, prompts change from "B:" to "E:" If you have used a text editor
before, you will find the BASIC09 editor similar to many others except for these two
differences:

1. The editor is both "string" and "line number" oriented. The use of line numbers
is optional and text can be corrected without re-typing the entire line.

2. The editor is interfaced to the BASIC09 compiler and "decompiler". This lets BA-
SIC09 do continuous syntax error checking and permits programs to be stored
in memory in a more compact, compiled form.

Overview of Edit Commands
The Editor includes the following commands. Each command is described in detail
later in this chapter.

Table 4-1. Edit Mode Commands

<cr> move edit pointer forward

+ move edit pointer forward

+* move edit pointer to end of text

- move edit pointer backward

-* move edit pointer to beginning of text

<space> <text> insert unnumbered line

<line#> <text> insert or replace numbered line

<line#> <cr> find numbered line

c change string

c* change all occurence of string

d delete line

d* delete all lines

l list line(s)

l* list all lines

q quit editing

r renumber line

r* renumber all lines

s search for string

s* search for all occurence of string

29

Chapter 4. Edit Mode

How the Editor Works
In order to understand how the editor works it is helpful to have a general idea of
what goes on inside BASIC09 while you are editing procedures. BASIC09 programs
are always stored in memory in a compiled form called "I-code" (short for "Inter-
mediate Code"). I-code is a complex binary coding system for programs that lies
between your original "source" program and the computer’s native "machine lan-
guage". I-code is relatively compact, can be executed rapidly, and most importantly,
can be reconstructed almost exactly back to the original source program. The Editor
is closely connected to the "compiler" and "decompiler" systems within BASIC09 that
translate source code to I-Code and vice-versa. It is this innovative system that gives
BASIC09 its most powerful and unusual abilities.

Whenever you enter (or change) a program line and "return", the compiler instantly
translates this text to the internal I-code form. When BASIC09 needs to display pro-
gram lines back, it uses the decompiler to translate the I-code back to the original
"source" format. These processes are completely automatic and do not require any
special action on your part.

This technique has several advantages. First, it allows the text editor to report many
(syntax) errors immediately so you can correct them instantly. Secondly, the I-code
representation of a program is more compact (by about 30%) than its original form,
so you can have have larger programs in any given amount of available memory.

When programs are listed by BASIC09, it is possible they will have a slightly differ-
ent appearance than the way they were originally typed in, but they will always be
functionally identical to the original form. This can happen if the original program
had extraneous spaces between keywords, unnecessary parentheses in expressions,
etc. BASIC09 keywords are always automatically capitalized.

When you have finished editing the procedure, use the "q" (for "quit") command to
exit edit mode and return to the command mode. When you give the "q" command,
the compiler performs another "pass" over the entire procedure again. At this time
syntax that extends over multiple lines is checked and errors reported. Examples of
these errors are: GOTO or GOSUB to a non-existent line, missing variable or array
declarations, improperly constructed loops, etc. These errors are reported using an
error code and the hexadecimal I-code address of the error. For example:

01FC ERR #043

This message means that error number 43 was detected in the line that included I-
code address 01FC (hexadecimal). The LIST command gives the I-code addresses so
you can locate lines with errors reported during the compiler’s second pass.

Line-Number Oriented Editing
As mentioned previously, the editor has the capability to work on programs with or
without line numbers (or both). Line numbers must be positive whole numbers in
the range of 1 to 32767.

If you have experience with another version of the BASIC language, this is the kind of
editing you probably used. However, well-structured programs seldom really need

30

Chapter 4. Edit Mode

line numbers. If you don’t have to use line numbers, don’t. Your programs will be
shorter, faster, and easier to read.

The line-number oriented commands are:

<line#> <text> insert or replace numbered line

<line#> <cr> find numbered line

d delete line

r renumber line

r* renumber all lines

To enter or replace a numbered line, simply type in the line number and statement.
Numbered lines can be entered in any order, but will be automatically stored in as-
cending sequence. To move to a numbered line, type the line number followed by
a carriage return. The editor will move to that line (or the line with the next higher
number if the specified number is not found) and print it. The line may be deleted
using the "d" command.

The "r" renumber command will uniformly resequence all numbered lines and lines
that refer to numbered lines. Its formats are:

r [<beg line #> [, <incr>]] <CR>
r*[<beg line #> [, <incr>]] <CR>

The first format renumbers the program starting at the current line and forward.
Lines are renumbered using <beg line#> as the initial line number. <incr> is added
to the previous line number for the next line’s number. For example,

r 200,5

will give the first line number 200, the second 205, the third 210, etc. If <beg line#>
and/or <incr> are not specified, the values 100 and 10, respectively, are assumed. The
second form of the command is identical exect it renumbers all lines in the procedure.

String-Oriented Editing
Most editor commands are string-oriented. This means that you can enter or change
whole or partial lines without using line numbers at all. You will find that string-
oriented editing is generally faster and more convenient.

Because line numbers are not used, there has to be another way to tell BASIC09 what
place in the program to work on. To do this, the editor maintains an "edit pointer"
that indicates which line is the present working location within the procedure, and
commands start workin at this point. The editor shows you the location of the edit
pointer by displaying an "*" at the left side of the program line where the edit pointer
is presently located.

31

Chapter 4. Edit Mode

Moving the Edit Pointer
The "+" and "-" are used to reposition the edit pointer:

- moves backward one line

- <number> moves backward n lines

-* moves to the beginning of the procedure

+ moves forward one line

+ <number> moves forward N lines

+* moves to the end of procedure

The number indicates how many lines to move. Backward means towards the first
line of the procedure. If the number is omitted, a count of one is used (this is true
of most edit commands). A line consisting of a carriage return only also moves the
pointer forward one line, which makes it easy to step through a program one line at
a time. Therefore, the following commands all do the same thing:

<CR>
+ <CR>
+1 <CR>

Inserting Lines
The Insert Line function consists of a "space" followed by a BASIC09 statement line.
The statement is inserted just ahead of the edit pointer position. (the space itself is
not inserted).

Deleting Lines
The "d" command is used to delete one or more lines. Its format is:

d [<number>] <CR>
d*

The first form deletes the <number> of lines starting at the current edit pointer lo-
cation. The second form deletes ALL lines in the procedure (caution!). The editor
accepts "+*" and "-*" to mean to the end, or to the beginning of the procedure respec-
tively. If the number is negative, that many lines BEFORE the current line is deleted.
If a line number is omitted, only the current line is deleted.

Listing Lines
The "l" command is used to display one or more lines. It also has the forms:

l [<number>] <CR>
l*

32

Chapter 4. Edit Mode

The first form will display the <number> of lines starting at the current edit pointer
position. If the number is NEGATIVE, previous lines will be listed. The second form
displays the entire procedure. Neither change the edit pointer’s position. The line
that is the present position of the edit pointer is displayed with a leading asterisk.

Search: Finding Strings
What’s a string? A string is a sequence of one or more characters that can include
letters, numbers, or punctuation in any combination. Strings are very usefull because
they allow you to change or locate just part of a statement without having to type the
whole thing. In the Editor, strings must be surrounded by two matching punctuation
characters (called delimiters) so the editor knows where the string begins and ends.
The characters used for delimiters are not considered part of the string and cannot
also appear within the string. Strings used by the Editor should not be confused with
BASIC09’s data type which is also called STRING — they are different creatures.

The "s" command may be used to locate the next occurrence or all occurrences of a
string. The format for this command is:

s <delim> <match str> [<delim>] <CR>
s* <delim> <match str> [<delim>] <CR>

The first format searches for the <match str> starting on the current edit pointer line
onward. If any line at or following the edit pointer includes a sequence of characters
that match the search string, the edit pointer is moved to that line and the line is
displayed. If the string cannot be located, the message:

CAN’T FIND: " <match str>"

will be displayed and the edit pointer will remain at its original position. The "s*"
variation searches for all occurrences of the string in the procedure starting at the
present edit pointer and displays all lines it is found in. The edit pointer ends up at
the last line the string occurred in.

Here are some examples:

E:s/counter/ Looks for the string: counter

E:s.1/2. Looks for the string: 1/2

E:s?three blind mice? Looks for the string: three blind mice

Change: String Substitution
The "c" change string function is a very handy tool that can eliminate a tremen-
dous amount of typing. It allows strings within lines to be located, removed, and
replaced by another string. This command is very commonly used for things like:
fixing lines with errors without having to retype the entire line, changing a variable
name throughout a program, etc. Its formats are:

c <delim> <match str> <delim> <repl str> [<delim>] <CR>

33

Chapter 4. Edit Mode

c* <delim> <match str> <delim> <repl str> [<delim>] <CR>

In the first form, the editor looks for the first occurrence of the match string starting
at the present edit pointer position. If found, the match string is removed from the
line and the replacement string is inserted in its place. The second form works the
same way, but changes ALL occurrences of the match string in the procedure starting
at the present edit pointer position.

The "c*" command will stop anytime it finds or causes a line with an error. It cannot
be used to find or change line numbers.

A word of warning: sometimes you can inadvertently change a line you did’t intend
to change because the match string is imbedded in a longer string. For example, if
you attempt to change "no" to "yes" and the word "normal" occurs before the "no"
you are looking for, "normal" will change to "yesrmal".

Examples:

c/xval/yval/
c*,GOSUB 5300,GOSUB 5500

34

Chapter 5. Execution Mode

Running Programs
To run a BASIC09 procedure, enter:

RUN <procname>

If the procedure you want to run was the last procedure edited, listed, saved, etc., you
can type RUN without giving a procedure name (the "*" shown in the DIR command
identifies this procedure).

If the procedure expects parameters (see Chapter 7), they can be given on the same
command line, however they must all be constant numbers or strings, as appropriate,
and must be given in the correct order. For example:

RUN add(4,7)

is used to call a program that expects parameter, such as

PROCEDURE add
PARAMETER a,b a,b will receive the values 4,7
PRINT a+b
END

The ability to pass parameters to a program allows you to specifically initialize pro-
gram variables. Sometimes certain procedures are parts of a larger software system
and are designed to be called from other procedures. You can use this feature to in-
dividually test such procedures by passing them test values as parameters.

The RUN statement causes BASIC09 to enter Execution Mode, causing the procedure
to run until one of the these things happen:

1. an END or STOP statement is executed

2. you type [Ctrl-E]

3. a run-time error occurs

4. you type [Ctrl-C] (keyboard interrupt)

In cases 1 and 2, you will return to system mode. In cases 3 and 4, you will enter
DEBUG mode.

Execution Mode: Technically Speaking
The RUN statement is simple and normally you do not need to know what is hap-
pening inside BASIC09 when you use it. The technical description of execution mode
that follows is given for the benefit of advanced BASIC09 programmers.

Execution mode is BASIC09’s state when you run any procedure. It involves exe-
cuting the I-code of one or more procedures inside or outside the workspace. Many
procedures can be in use because they can call each other (or themselves) and nest
exactly like subroutines. You can enter execution mode in a number of ways:

35

Chapter 5. Execution Mode

1. By means of the RUN system command.

2. By BASIC09’s auto-run feature.

The Auto-run feature allows BASIC09 to get the name of a file to load and run from
the same command line used to call BASIC09. The file loaded and run can be either
a SAVED file (in the data directory), or a PACKED file (in the execution directory).
The file may contain several procedures; the one executed is the one with the same
name as the file. Parameters may be passed following the pathname specified. For
example, the following OS-9 command lines use this feature:

OS9: BASIC09 printreport("Past Due Accounts")
OS9: BASIC09 evaluate(COS(7.8814)/12.075,-22.5,129.055)

36

Chapter 6. Debug Mode

Overview of Debug Mode
One of BASIC09’s outstanding features is its set of powerful symbolic debugging com-
mands. What is Symbolic Debugging? Simply stated, it is testing and manipulation
of programs using the actual names and program statements used in the program. In
this chapter you will learn how Debug Mode can let you watch your program run in
slow motion you can observe each statement as it is executed. As a bonus, you will
also learn how to use the Debug Mode as a calculator.

Debug mode is entered from execution mode in one of three ways:

1. When an error occurs during execution of a procedure (that is not intercepted
by an ON ERROR GOTO statement within the program).

2. When a procedure executes a PAUSE statement.

3. When a keyboard interrupt (control-C) occurs.

When any of the above happen, Debug Mode announces itself by displaying the
suspended procedure name like this:

BREAK: PROCEDURE test5
D:

Notice that Debug Mode displays a "D:" prompt when it is awaiting a command.
Any debug mode commands can the be used to examine or change variables, turn
trace mode on/off, etc. Depending on which commands are used, execution of the
program can be terminated, resumed, or executed one source line at a time.

Debug Mode Commands

$ <text>

Calls OS-9’s Shell command interpreter to run a program or OS-9 command. Exactly
the same as the System Mode "$" command.

BREAK <proc name>

Sets up a "breakpoint" at the procedure named. This command is used when proce-
dures call each other, and provides a way to re-enter Debug Mode when returning
to a specific procedure. To illustrate how BREAK works, suppose there are three pro-
cedures in the workspace: PROC1, PROC2, and PROC3. Assume that PROC1 calls
PROC2, which in turn calls PROC3. While PROC3 is executing, you type Control-C
to enter debug mode. You can now enter:

D: BREAK proc1

37

Chapter 6. Debug Mode

ok
D:

Notice that BREAK responds with "ok" if the procedure was found on the current
RUN stack. If you wish you can use the STATE command to verify that the three pro-
cedures are "nested" as expected. Now, you can resume execution of PROC3 by typ-
ing CONT. After PROC3 terminates, control passes back to PROC2, which eventually
returns to PROC1. As soon as this happens, the breakpoint you set is encountered,
PROC1 is suspended, and Debug Mode is reentered.

There are three characteristics of BREAK you should note:

1. The breakpoint is removed as soon as it occurs.

2. You can use one breakpoint for each active procedure.

3. You can’t put a breakpoint on a procedure unless it has been called but not yet
returned to. Hence, BREAK cannot be used on procedures that have not yet
been run.

CONT

The command causes program execution to continue at the next statement. It may
resume programs suspended by Control-C, PAUSE statements, BREAK command
breakpoints, or after non-fatal run-time errors.

DEG
RAD

These commands select either degrees or radians as the angle unit measure used by
trigonometric functions. These commands only affect the procedure currently being
debugged or run.

DIR [<path>]

Displays the workspace procedure directory in exactly the same way as the System
Mode DIR command.

END or Q

Termintes execution of all procedures and exits Debug Mode by returning to System
Mode. Any open paths are closed at this point.

LET <var> := <expr>

This command is essentially the same as the BASIC09 LET program statement, which
allows the value of a procedure variable to be set to a new value using the result of the
evaluated expression. The variable names used in this command must be the same
as in the original "source" program; otherwise, an error is generated. LET does not
work on user-defined data structures.

38

Chapter 6. Debug Mode

LIST

Displays a formatted source listing of the suspended procedure with I-code
addresses. An asterisk is printed to the left of the statement where the procedure is
suspended. Only list the current procedure may be listed.

PRINT [#<expr>,] [USING <expr>,] <expr list>

This is exactly the same as the BASIC09 PRINT statement and can be used to examine
the present value of variables in the suspended program. All variable names must be
the same as in the original program, and no new variable names can be used. User-
defined data structures cannot be printed.

STATE

This command lists the calling ("nesting") order of all active procedures. The highest-
level procedure is always shown at the bottom of the calling list, and the lowest-level
procedure will always be the suspended procedure. An example:

D:state
PROCEDURE DELTA
CALLED BY BETA
CALLED BY ALPHA
CALLED BY PROGRAM

STEP [<number>] or <CR>

This command allows the suspended procedure to be executed one or more source
statements at a time. For example, "STEP 5" would execute the equivalent of the next
5 source statements. A debug command line which is just a carriage return is con-
sidered the same as "STEP 1". The STEP command is most commonly used with the
trace mode on, so the original source lines can be seen as they are executed.

Note: because compiled I-code contains actual statement memory addresses, the
"top" or "bottom" statements of loop structures are usually executed just once. For
example, in FOR...NEXT loops the FOR statement is executed once, so the statement
that appears to be the top of the loop is actually the one following the "FOR"
statement.

TRON
TROFF

These commands turn the suspended procedure’s trace mode on and off. In trace
mode, the compiled code of each equivalent statement line is reconstructed to source
statements and displayed before the statement is executed. If the statement causes
the evaluation of one or more expressions, an equal sign and the expression result(s)
are displayed on the following line(s).

Trace mode is local to a procedure. If the suspended procedure calls another, no trac-
ing occurs until control returns back (unless of course, other called procedure(s) have
trace mode on).

39

Chapter 6. Debug Mode

Debugging Techniques
If your program does not do what you expect it to, it is bound to show one of two
symptoms: incorrect results, or premature termination due to an error. The second
case will automatically send you into Debug Mode. In the first case, you have to
force the program into Debug Mode either by hitting Control-C (assuming you have
time to do so), or by using Edit Mode to put one or more PAUSE statements in the
program. Once you’re in Debug Mode, you can bring its powerful commands to bear
on the problem.

Usually the first step after an error stops the program is to place a PAUSE statement
at the beginning of the suspected procedure or at a place within it where you think
things begin to go amiss, and the you rerun the program. When the program hits the
PAUSE statement, and enters DEBUG mode, it is time to turn the trace mode on and
actually watch your program run. To do so, just type:

D: TRON

After you have done this, you hit the carriage return key once for every statement.
You will see the original source statement, and if expressions are evaluated by the
statement, Debug Mode will print an equal sign and the result of the expression.
Notice that some statements such as FOR and PRINT may cause more than one ex-
pression to be evaluated. Using this technique, you can watch your program run one
step at a time until you see where it goes wrong. But what if in the process of trac-
ing, you encounter a loop that works OK, but executes 200 statements repetitively?
That’s a lot of carriage returns. In this case, turn the trace off (if you want) and use
the STEP command to quickly run through the loop. Then, turn trace mode back on,
and resume single-step debugging. The command sequence for this example is:

D: TROFF
D: STEP 200
D: TRON

Don’t forget that trace mode is "local" to one procedure only. If the procedure un-
der test returns to another procedure you need to use the BREAK command or put
a PAUSE statement in the procedure to enter Debug Mode. If you call another pro-
cedure from the procedure being debugged, tracing will stop when it is called until
it returns. If you also want to trace the called procedure, it will need its own PAUSE
statement.

Debug Mode as a Desk Calculator
The simple program listed below turns Debug Mode into a powerful desk calculator.
It’s function is simple: it declares 26 working variables, then goes into Debug Mode
so you can use interactive PRINT and LET statements.

PROCEDURE Calculator
DIM a,b,c,d,e,f,g,h,i,j,k,l,m
DIM n,o,p,q,r,s,t,u,v,w,x,y,z
PAUSE
END

40

Chapter 6. Debug Mode

Recall that while in debug mode, you cannot create new variables, hence the DIM
statements that pre-define 26 working variables for you. If you wish yu can add more
or fewer variables. The PAUSE statement causes Debug Mode to be entered. Here’s
a sample session:

B: run calculator
BREAK: PROCEDURE Calculator
D:let x:=12.5
D:print sin(pi/2)
.7071606781
D:let y:=exp(4+0.5)
D:print x,y
12.5 90.0171313
D:Q
B:

Don’t forget that the Debug Mode PRINT command can use PRINT USING to pro-
duce formatted output (including hexadecimal).

By adding less than a dozen statements to the program, you can make it store its
variables on a disk file so they’re remembered from session to session. There are also
many other enhancement possibilities

41

Chapter 6. Debug Mode

42

Chapter 7. Data Types, Variables and Data Structures

Why are there different data types?
A computer program’s primary function is to process data. The performance of the
computer, and even sometimes whether or not a computer can handle a particular
problem, depends on how the software stores data in memory and operates on it.
BASIC09 offers many possibilities for organizing and manipulating data.

Complicating matters somewhat is the fact that there are many kinds of data. Some
data are numbers used for counting or measuring. Another example is textual data
composed of letters, punctuation, etc., such as your name. Seldom can they be mixed
(for example multiplication is meaningless to anything but numbers), and they have
different storage size requirements. Even within the same general kind of data, it is
frequently advantageous to have different ways to represent data. For example, BA-
SIC09 lets you chose from three different ways to represent numbers - each having its
own advantages and disadvantages. The decision to use one depends entirely on the
specific program you are writing. In order for you to select the most appropiate way
to store data variables, BASIC09 provides five different basic data types. BASIC09
also lets you create new customized data types based on combinations of the five ba-
sic types. A good analogy is to consider the five basic types to be atoms, and the new
types you create as molecules. This is why the five basic types are called atomic data
types.

Data Structures
A data structure refers to storage for more than one data item under a single name.
Data structures are often the most practical and convenient way to organize large
amounts of similar data. The simplest kind of data structure is the array, which is a
table of values. The table has a single name, and the storage space for each individual
value is numbered. Arrays are created by DIM statements. For example, to create an
array having five storage spaces called "AGES", we can use the statement:

DIM AGES(5):INTEGER

"(5)" tells BASIC09 how many spaces to reserve. The ":INTEGER" part indicates the
array’s data type. To assign a value of 22 to the third storage space in the array we
can use the statement:

LET AGES(3):=22

As you shall see, BASIC09 lets you create complex arrays and even arrays that have
different data types combined.

Atomic Data Types
BASIC09 includes five atomic data types: BYTE, INTEGER, REAL, STRING and
BOOLEAN. The first three types are used to represent numbers, The STRING type is
used to represent character data, and the BOOLEAN type is used to represent the
logical values of either TRUE or FALSE. Arrays of any of these data types can be

43

Chapter 7. Data Types, Variables and Data Structures

created using one, two, or three dimensions. The table below gives an overview of
the characteristics of each type:

Table 7-1. BASIC09 Atomic Data Type Summary

Type: Allowable values: Memory requirement:

BYTE Whole Numbers 0 to 255 One byte

INTEGER Whole Numbers 32768 to 32767 Two bytes

REAL Floating Point +/ 1*10^38 Five bytes

STRING Letters, digits, punctuation One byte/character

BOOLEAN True or False One byte

Why are there three different ways to represent numbers? Although REAL numbers
appear to be the most versatile because they have the greatest range and are floating-
point, arithmetic operations involving them are relatively slower (by a factor of about
four) compared to the INTEGER or BYTE types. Thus using INTEGER values for loop
counters, indexing arrays, etc. can significantly speed up your programs. The BYTE
type is not appreciably faster than INTEGER, it conserves memory space in some
cases and serves as a building block for complex data types in other cases. If you
neglect to specify the type of a variable, BASIC09 will automatically use the REAL
data type.

Type BYTE
BYTE variables hold integer values in the range 0 through 255 (unsigned 8-bit data)
which are stored as a single byte. BYTE values are always converted to another type
(16-bit integer values and/or real values) for computation, thus they have no speed
advantage over other numeric types. However, BYTE variables require only half of
the storage used by integers, and an 1/5 of that used by reals. Attempting to store an
integer value outside the BYTE range to a BYTE variable results in the storage of the
least-significant 8-bits (the value modulo 256) without error.

Type INTEGER
INTEGER variables consist of two bytes of storage, and hold a numeric value in the
range 32768 through 32767 as signed 16-bit data. Decimal points are not allowed.
INTEGER constants may also be represented as hexadecimal values in the range
$0000 through $FFFF to facilitate address calculations. INTEGER values are printed
without a decimal point. INTEGER arithmetic is faster and requires less storage than
REAL values.

Arithmetic which results in values outside the INTEGER range does not cause run-
time errors but instead "wraps around" modulo 65536; i.e., 32767 + 1 yields -32768.
Division of an integer by another integer yields an integer result, and any remain-
der is discarded. The programmer should be aware that numeric comparisons made
on values in the range 32767 through 65535 will actually be dealing with negative
numbers, so it may be desirable to limit such comparisons to tests for equality or
non-equality. Additionally, certain functions (LAND, LNOT, LOR, LXOR) use inte-
ger values, but produce results on a non-numeric bit-by-bit basis.

44

Chapter 7. Data Types, Variables and Data Structures

Type REAL
The REAL data type is the default type for undeclared variables. However, a variable
may be explicitly typed REAL (for example, twopi:REAL) to improve a program’s
internal documentation. REAL-type values are always printed with a decimal point,
and only those constants which include a decimal point are actually stored as REAL
values.

REAL numbers are stored in 5 consecutive memory bytes. The first byte is the (8-
bit) exponent in binary two’s-complement representation. The next four bytes are the
binary sign-and-magnitude representation of the mantissa; the mantissa in the first
31 bits, and the sign of the mantissa in the last (least significant) bit of the last byte of
the real quantity.

+--------+--------+--------+--------+--------+
|exponent| | | | |S| <- mant. sign
+--------+--------+--------+--------+--------+

byte: +0 +1 +2 +3 +4

Figure 7-1. Internal Representation of REAL Numbers

The exponent covers the range 2.938735877 * 10^-39 (2^-128) through 1.701411835 *
10^38 (2^127) as powers of 2. Operations which result in values out of the represen-
tation range cause overflow or underflow errors (which may be handled automati-
cally by the ON ERROR command). The mantissa covers the range from 0.5 through
.9999999995 in steps of 2^-31. This means that REAL numbers can represent values
on the number line about .0000000005 apart. Operations which cause results between
the representable points are rounded to the nearest representable number.

Floating point arithmetic is inherently inexact, thus a sequence of operations can pro-
duce a cumulative error. Proper rounding (as implemented in BASIC09) reduces this
effect but cannot eliminate it. Programmers using comparisons on REAL quantities
should use caution with strict comparisons (i.e., = or <>), since the exact desired
value may not occur during program execution.

Type STRING
A STRING is a variable length sequence of characters or nil (an empty string). A
variable may be defined as a STRING either explicitly (e.g., DIM title:STRING) or im-
plicitly by appending a dollar-sign character to the variable name (title$:= "My First
Program."). The default maximum length allocated to each string is 32 characters, but
each string may be dimensioned less (e.g., DIM A:STRING [4]) for memory savings
or more (e.g., DIM long:STRING [2880]) to allow long strings. Notice that strings are
inherently variable-length entities, and dimensioning the storage for a string only de-
fines the maximum-length string which can be stored there. When a STRING value
is assigned to a STRING variable, the bytes composing the string are copied into the
variable storage byte-by-byte. The beginning of a string is always character number
one, and this is NOT affected by the BASE0 or BASE1 statements. Operations which
result in strings too long to fit in the dimensioned storage truncate the string on the
right and no error is generated.

45

Chapter 7. Data Types, Variables and Data Structures

Normally the internal representation of the string is hidden. A string is stored in
a fixed-size storage area and is represented by a sequence of bytes terminated by
the value zero or by the maximum length allocated to the STRING variable. Any
remaining "unused" storage after the zero byte allows the stored string to expand
and contract during execution. The example below shows the internal storage of a
variable dimensioned as STRING[6] and assigned a value of "SAM". Notice the byte
at +3 contains the zero string terminator, and the two following bytes are not used.

+--------+--------+--------+--------+--------+--------+
| S | A | M | 00 | | |
+--------+--------+--------+--------+--------+--------+

byte: +0 +1 +2 +3 +4 +5

If the value "ROBERT" is assigned to the variable, the zero byte terminator is not
needed because the STRING fills the storage exactly:

+--------+--------+--------+--------+--------+--------+
| R | O | B | E | R | T |
+--------+--------+--------+--------+--------+--------+

byte: +0 +1 +2 +3 +4 +5

Type BOOLEAN
A BOOLEAN quantity can have only two values: TRUE or FALSE. A variable may
be typed BOOLEAN (e.g., DIM done_flag:BOOLEAN). BOOLEAN quantities are
stored as single byte values, but they may not be used for numeric computation.
BOOLEAN values print out as the character strings: "TRUE" and "FALSE."
BOOLEAN values result from comparisons (comparing two compatible types),
and are appropriate for logical flags and expressions. (result:=a AND b AND c).
Do not confuse BOOLEAN operations AND, OR, XOR, and NOT (which operate
on the Boolean values TRUA end FALSE) with the logical functions LAND, LOR,
LXOR, and LNOT (which use integer values to produce results on a bit-by-bit basis).
Attempting to store a non-BOOLEAN value in a BOOLEAN variable (or the reverse)
will cause a run-time error.

Automatic Type Conversion
Expressions that mix numeric data types (BYTE, INTEGER, or REAL) are automat-
ically and temporarily converted to the largest type necessary to retain accuracy. In
addition, certain BASIC09 functions also perform automatic type conversions as nec-
essary. Thus, numeric quantities of mixed types may be used in most cases. Type-
mismatch errors happen when an expression includes types that cannot legally be
mixed. These errors are reported by the second compiler pass which automatically
occurs when you leave EDIT mode. Type conversions can take time. Therefore, you
should use expressions containing all values of a single type wherever possible.

46

Chapter 7. Data Types, Variables and Data Structures

Constants
Constants are frequently used in program statements and in expressions to assign
values to variables. BASIC09 has rules that allow you to specify constants that corre-
spond to the five basic data types.

Numeric Constants
Numeric constants can be either REAL or INTEGER. If a number constant includes
a decimal point or uses the "E format" exponential form, it forces BASIC09 to store
the number in REAL format even if the value could have been stored in INTEGER or
BYTE format. Thus, if you specifically want to specify a REAL constant, use a decimal
point (for example, 12.0). This is sometimes done if all other values in an expression
are of type REAL so BASIC09 does not have to do a time-consuming type conversion
at run-time. Numbers that do not have a decimal point but are too large to be rep-
resented as integers are also stored in REAL format. The following are examples of
REAL values:

1.0 9.8433218

-.01 -999.000099

100000000 5655.34532

1.95E+12 -99999.9E-33

Numbers that do not have a decimal point and are in the range of 32768 to +32767
are treated as INTEGER numbers. BASIC09 will also accept integer constants in hex-
adecimal in the range 0 to $FFFF. Hex numbers must have a leading dollar sign. Here
are some examples of INTEGER constants:

12 -3000 64000

$20 $FFFE $0

0 -12 -32768

Boolean Constants
The two legal boolean constants are "TRUE" and "FALSE".

Example:

DIM flag, state: BOOLEAN
flag := TRUE
state := FALSE

47

Chapter 7. Data Types, Variables and Data Structures

String Constants
String constants consist of a sequence of any characters enclosed in double quote
characters. The binary value of each character byte can be 1 to 255. Double quote
characters to be included in the string use two characters in a row to represent one
double quote. The null string "" is important because it represents a string having
no characters. It is analogous to the numeric zero. Here are some examples of string
constants:

"BASIC09 is a new microcomputer language"
"AABBCCDD"
"" (a null string)
"An ""older man"" is wiser"

Variables
Each BASIC09 variable is "local" to the procedure where it is defined. This means
that it is only known to the program statements within that procedure. You can use
the same variable name in several procedures and the variables will be completely
independent. If you want other procedures to be able to share a variable, you must
use the RUN and PARAM statements to pass the variable when a procedure calls
another procedure.
Storage for variables is allocated from the BASIC09 workspace when the procedure is
called. It is not possible to force a variable to occupy a particular absolute address in
memory. When the procedure is exited, variable storage is given back and the values
stored in it are lost. Procedures can call themselves (this is referred to as recursion)
which causes another separate storage space for variables to be allocated.

Warning
BASIC09 does not automatically initialize variables. When a procedure
is run, all variables, arrays, and structures will have random values.
Your program must assign any initial value if needed.

Parameter Variables
Procedures may pass variables to other procedures. When this occurs, the variables
passed to the called procedure are called "parameters". Parameters may be passed
either "by reference", allowing values to be returned from the called procedure, or
"by value", which protects the values in the calling procedure such that they may not
be changed by the procdure which is called.

Parameters are usually passed "by reference"; this is done by enclosing the names of
the variables to be sent to the called procedure in parentheses as part of the RUN
statement. The storage address of each parameter variable is evaluated and sent to
the called procedure, which then associates those addresses with names in a local

48

Chapter 7. Data Types, Variables and Data Structures

PARAM statement. The called procedure uses this storage as if it had been created lo-
cally (although it may have a new name) and can change the values stored there. Pa-
rameters passed by reference allow called procedures to return values to their callers.

Parameters may be passed "by value" by writing the value to be passed as an expres-
sion which is evaluated at the time of the call. Useful expression-generators that do
not alter values are +0 for numbers or +"" for strings. For example:

RUN inverse(x) passes x by reference.
RUN inverse(x+0) passes x by value.
RUN translate(word$) passes word$ by reference.
RUN translate(word$+"") passes word$ by value.

When parameters are passed by value, a temporary variable is created when the ex-
pression is evaluated. The result is placed in this new temporary storage. The address
of this temporary storage is sent to the called procedure. Therefore, the value actu-
ally given to the called procedure is a copy of the result, and the called procedure
can’t accidentially (or otherwise) change the variable(s) in the calling program.

Notice that expressions containing numeric constants are either of type INTEGER or
of type REAL; there is no type BYTE constant. Thus, BYTE-type VARIABLES may
be sent to a procedure as parameters; but expressions will be of types INTEGER or
REAL. For example, a RUN statement may evaluate an INTEGER as a parameter
and send it to the called procedure. If the called procedure is expecting a BYTE-type
variable, it uses only the high-order byte of the (two-byte) INTEGER (which, if the
value was intended to be in BYTE-range, will probably be zero!).

Arrays
The DIM statement can create arrays of from 1 to 3 dimensions (a one-dimensional
array is often called a "vector", while a 2 or 3 dimensional array is called a "ma-
trix"). The sizes of each dimension are defined when the array is typed (e.g., DIM
plot(24,80):BYTE) by including the number of elements in each dimension. Thus, a
table dimensioned (24,80) has 24 rows (1-24) of 80 columns (1 - 80) when accessed in
the default (BASE 1) mode. You may elect to access the elements of an array starting
at zero (BASE 0), in which case there are still 24 rows (now 0-23) and 80 columns
(now 0-79). Arrays may be composed of atomic data types, complex data types, or
other arrays.

Complex Data Types
The TYPE statement can be used to define a new data type as a "vector" (a one-
dimensional array) of any atomic or previously-defined types. For example:

TYPE employee_rec = name:STRING; number(2):INTEGER; malesex:BOOLEAN

This structure differs from an array in that the various elements may be of mixed
types, and the elements are accessed by a field name instead of an array index. For
example:

49

Chapter 7. Data Types, Variables and Data Structures

DIM employee_file(250): employee_rec
employee_file(1).name := "Tex"
employee_file(20).number(2) := 115

The complex structure gives the programmer the ability to store and manipulate re-
lated values that are of many types, to create "new" types in addition to the five
atomic data types, or to create data structures of unusual "shape" or size. Addition-
ally, the position of the desired element in complex-type storage is known and de-
fined at "compile time" and need not be calculated at "run time". Therefore, complex
structure accesses may be slightly faster than array accesses. The elements of a com-
plex structure may be copied to another similar structure using a single assignment
operator (:=). An entire structure may be written to or read from mass storage as
a single entity (e.g., PUT #2, employee_file). Arrays or complex structures may be
elements of subsequent complex structures or arrays.

50

Chapter 8. Expressions, Operators, and Functions

Evaluation of Expressions
Many BASIC09 statements evaluate expressions. The result of an evaluation is just
a value of some atomi type (e.g., REAL, INTEGER, STRING, or BOOLEAN). The
expression itself may consist of values and operators. For example, the expression
"5+5" results in an integer with a value of ten.

A "value" can be a constant value (e.g, 5.0, 5 , "5" , or TRUE), a variable name, or
a function (e.g, SIN(x)) which "returns" the result as a value. An operator combines
values (typically, those adjacent to the operator) and also returns a result.

In the course of evaluating an expression, each value is copied to an "expression
stack" where functions and operators take their input values and return results. If
(as is often the case) the expression is to be used in an assignment statement, only
when the result of the entire expression has been found is the assignment made. This
allows the variable which is being modified (assigned to) to be one of the values in
the expression. The same principles apply for numeric, string, and boolean operators.
These principles make assignment statements such as "X=X+1" legal in all cases, even
though it would not make sense in a mathematical context.

Any expression evaluates to one of the five "atomic" data types, i.e., real, integer,
byte, boolean, or string. This does not mean, however, that all the operators and
operands in expressions have to be of an identical type. Often types are mixed in
expressions because the RESULT of some operator or function has a different type
than its operands. An example is the "less than" operator. Here is an example:

24 < 100

The "<" operator compares two numeric operands. The result of the comparison is of
type BOOLEAN; in this case, the value TRUE.

BASIC09 allows intermixing of the three numeric types because it performs auto-
matic type conversion of operands. If different types are used in an expression, the
"result" will be the same type as the operand(s) having the largest representation. As
a rule, any numeric type operand may be used in a expression that is expected to
produce a result of type REAL. Expressions that must produce BYTE or INTEGER
results must evaluate to a value that is small enough to fit the representation. BA-
SIC09 has a complete set of functions that can perform compatible type conversion.
Type-mismatch errors are reported by the second compiler pass when leaving Edit
mode.

Operators
Operators take two operands (except negation) and cause some operation to be per-
formed producing a result, which is generally the same type as the operands (except
comparisons). The table below lists the operators available and the types they accept
and produce. "NUMERIC" refers to either BYTE, INTEGER, or REAL types.

Table 8-1. BASIC09 Expression Operators

51

Chapter 8. Expressions, Operators, and Functions

Operator Function Operand type Result type

- Negation NUMERIC NUMERIC

^ or ** Exponentiation NUMERIC (positive) NUMERIC

* Multiplication NUMERIC NUMERIC

/ Division NUMERIC NUMERIC

+ Addition NUMERIC NUMERIC

Subtraction NUMERIC NUMERIC

NOT Logical Negation BOOLEAN BOOLEAN

AND Logical AND BOOLEAN BOOLEAN

OR Logical OR BOOLEAN BOOLEAN

XOR Logical EXCLUSIVE
OR

BOOLEAN BOOLEAN

+ Concatenation STRING STRING

= Equal to ANY BOOLEAN

<> or >< Not equal to ANY BOOLEAN

< Less than NUMERIC, STRING* BOOLEAN

<= or =< Less than or Equal NUMERIC, STRING* BOOLEAN

> Greater than NUMERIC, STRING* BOOLEAN

>= or => Greater than or Equal NUMERIC, STRING* BOOLEAN

When comparing strings, the ASCII collating sequence is used, so that 0 < 1 < ... < 9
< A < B< ... < Z < a < b< ... < z

Operator Precedence
Operators have "precedence". This means they are evaluated in a specific order. (i.e.,
multiplications performed before addition). Parentheses can be used to override nat-
ural precedence, however, extraneous parentheses may be removed by the compiler.
The legal operators are listed below, in precedence order from highest to lowest.

Highest Precedence

NOT (negate)

^ **

* /

+

> < <> = >= <=

AND

OR XOR

Lowest Precedence

52

Chapter 8. Expressions, Operators, and Functions

Operators of equal precedence are shown on the same line, and are evaluated left
to right in expressions. The only exception to this rule is exponentiation, which is
evaluated right to left. Raising a negative number to a power is not legal in BASIC09.

In the examples below, BASIC09 expressions on the left are evaluated as indicated on
the right. Either form may be entered, but the simpler form on the left will always be
generated by the decompiler.

BASIC09 representation Equivalent form

a:= b+c**2/d a:= b+((c**2)/d)

a:= b>c AND d>e OR c=e a:= ((b>c) AND (d>e)) OR (c=e)

a:= (b+c+d)/e a:= ((b+c)+d)/e

a:= b**c**d/e a:= (b**(c**d))/e

a:= (b)**2 a:= (b)**2

a:=b=c a:= (b=c) (returns BOOLEAN value)

Functions
Functions take one or more arguments enclosed in parentheses, perform some oper-
ation, and return a value. They may be used as operands in expressions. Functions
expect that the arguments passed to them be expressions, constants, or variables of a
certain type and return a result of a certain type. Giving a function, an argument of
an incompatible type will result in an error.

In the descriptions of functions that follow, the following notation describes the type
required for the parameter expressions:

<num> means any numeric-result expression.

<str> means any string-result expression.

<int> means any integer-result expression.

The functions below return REAL results. Accuracy of transcendental functions is
8+ decimal digits. Angles can be either degrees or radians (see DEG/RAD statement
descriptions).

SIN(<num>) trigonometric sine of <num>

COS(<num>) trigonometric cosine of <num>

TAN(<num>) trigonometric tangent of <num>

ASN(<num>) trigonometric arcsine of <num>

ACS(<num>) trigonometric arcosine of <num>

ATN(<num>) trigonometric arctangent of <num>

53

Chapter 8. Expressions, Operators, and Functions

LOG(<num>) natural logarithm (base e) of <num>

LOG10(<num>) logarithm (base 10) of <num>

EXP(<num>) e (2.71828183) raised to the power <num>, which must be
a positive number

FLOAT(<num>) <num> converted to type REAL (from BYTE or INTEGER)

INT(<num>) truncates all digits to the right of the decimal point of a
REAL <num>

PI the constant 3.14159265.

SQR(<num>) square root of <num>, which must be positive.

SQRT(<num>) square root of <num>; same as SQR.

RND(<num>) if <num>=0, returns random x, 0 <= x < 1.

if <num>>0, returns random x, 0 <= x < <num>.

if <num><0, use ABS(<num>) as new random number
seed.

The following functions can return any numeric type, depending on the type of the
input parameter(s).

ABS(<num>) absolute value of <num>

SGN(<num>) signum of <num>: 1 if <num> < 0; 0 if <num> = 0; or 1 if
<num> > 0

SQ(<num>) <num> squared

VAL(<str>) convert type string to type numeric

The following functions can return results of type INTEGER or BYTE:

FIX(<num>) round REAL <num> and convert to type INTEGER.

MOD(<num1>,<num2>)modulus (remainder) function. <num1> mod <num2>.

ADDR(<name>) absolute memory address of variable, array, or structure
named <name>.

SIZE(<name>) storage size in bytes of variable, array, or structure named
<name>.

ERR error code of most recent error, automatically resets to zero
when referenced.

PEEK(<int>) value of byte at memory address <int>.

POS current character position of PRINT buffer.

ASC(<str>) numeric value of first character of <str>.

LEN(<str>) length of string <str>.

54

Chapter 8. Expressions, Operators, and Functions

SUBSTR(<str1>,<str2>)substring search: returns starting position of first
occurrence of <str1> in <str2>, or 0 if not found.

The following functions perform bit-by-bit logical operations on integer or byte data
types and return integer results. They should NOT be confused with the BOOLEAN-
type operators.

LAND(<num>,<num>)Logical AND

LOR(<num>,<num>) Logical OR

LXOR(<num>,<num>) Logical EXCLUSIVE OR

LNOT(<num>) Logical NOT

These functions return a result of type STRING:

CHR$(<int>) ASCII char. equivalent of <int>

DATE$ date and time, format: "yy/mm/dd hh:mm:ss"

LEFT$(<str>,<int>) leftmost <int> characters of <str>.

RIGHT$(<str>,<int>) rightmost <int> characters of <str>.

MID$(<str>,<int1>,<int2>)middle <int2> characters of <str> starting at character
position <int1>.

STR$(<num>) converts numeric type <num> to displayable
characters of type STRING representing the number
converted.

TRIM$(<str>) <str> with trailing spaces removed.

The following functions return BOOLEAN values:

TRUE always returns TRUE.

FALSE always returns FALSE.

EOF(#<num>) End-of-file test on disk file path <num>, returns TRUE if
end-of-file condition

55

Chapter 8. Expressions, Operators, and Functions

56

Chapter 9. Program Statements and Structure

Program Structure
Each BASIC09 can be a complete program in itself, or several procedures that call
each other can be used to create an application program. It is up to the programmer
to decide which approach to take. One procedure may suffice for small programs
but large programs are easier to write and test if divided into separate modules (pro-
cedures) according to the program’s natural flow. These suggestions reflect sound
structured programming practice. Nonetheless, you can use a single large procedure
for your program if you so desire.

A procedure consists of any number of program statement lines. Each line can have
an optional line number, and more than one program statement can be placed on the
same line if separated by "\" characters. For example, the following statements are
equivalent:

GOSUB 550 \ PRINT X,Y \ RETURN GOSUB 550 PRINT X,Y RETURN

The maximum input line length is 255 characters. Line feeds can be used to make a
single long line into shorter lines to fit display screens better. This is especially useful
when working on hard-copy terminals.

Program statements can be in any order consistent with program logic Progra read-
ability is improved if all variables are declared with DIM statements at the beginning
of the procedure, but this is not mandatory. The program can be terminated with
END or STOP statements, which are also optional.

Line Numbers
Line numbers are optional. They can be any integer number in the range of 1 to
32767. Only use line numbers where absolutely necessary (such as with GOSUB).
They make programs harder to understand, use additional memory space, and in-
crease compile time considerably. Line numbers are local to procedures. That is, the
same line number can be used in different procedures without conflict.

Assignment Statements
Assignment statements are used for computing or initializing of variables.

LET Statement
Syntax:

[LET] <var> := <expr>
[LET] <var> = <expr>
[LET] <struct> := <struct>
[LET] <struct> = <struct>

57

Chapter 9. Program Statements and Structure

This statement evaluates an expression and stores the result in <var> which may
be a simple variable or data structure element. The result of the expression must
be of the same or compatible type as <var>. BASIC09 will accept either "=" or ":="
as an assignment operator, however, the second form (:=) is preferred because it
distinguishes the assignment operation from a comparison (the test for equality). The
":=" operator is the same as used in PASCAL.

Another use of the assignment statement is to copy the entire value of an array or
complex data structure to another array or complex data structure. The data struc-
tures do not have to have the same type or "shape". The only restriction is that the
size of the destination structure be the same or larger than the source structure. In
fact this type of assignment can be used to perform unusual type conversions. For
example, a string variable of 80 characters can be copied to a one-dimensional array
of 80 bytes.

Examples:

A := 0.1

value := temp/sin(x)

DIM array1(100), array2(100)
array1 := array2

LET AUTHOR$:= FIRST_NAME$ + LAST_NAME$

DIM truth,lie:BOOLEAN
lie := 100 < 1
truth := NOT lie

count = total-adjustment
matrix(2).coefficient(n+2) := matrix(1).coefficient(n)

POKE Statement
Syntax:

POKE <integer expr> , <byte expr>

This statement allows a program to store data at a specific memory address. The first
expression is used as the absolute address to store the type BYTE result of the second
expression. This statement can alter any memory address so care must be taken when
using it.

Examples:

POKE ADDR(buffer)+5,ASC("A")

POKE 1200,14

POKE $1C00,$FF

58

Chapter 9. Program Statements and Structure

POKE pointer,PEEK(pointer+1)

(* alternative to: alphabet$:= "ABCDEFGHIJKLMNOPQRSTUVWXYZ" *)
FOR i=0 to 25

POKE ADDR(alphabet$)+i,$40+i
NEXT i
POKE ADDR(alphabet$)+26,$FF

Control Statements
This class of statements affect the (usually) sequential execution of program state-
ments. They are used to construct loops or make decisions that alter program flow.
BASIC09 provides a selection of looping statements that allow you to create any kind
of loop using sound structured programming style.

IF Statement: Type 1
Syntax:

IF <bool expr> THEN <line #>

This form of the if statement causes execution to be transferred to the statement hav-
ing the line number specified if the result of the expression is TRUE, otherwise the
next sequential statement is executed. For example:

IF payment < balance then 400

IF Statement: Type 2
Syntax:

IF <bool expr> THEN <statements>
[ELSE <statements>]
ENDIF

This kind of IF structure evaluates the expression to a BOOLEAN value. If the result
is TRUE the statement(s) immediately following the THEN are executed. If an ELSE
clause exists, statements between the ELSE and ENDIF are skipped. If the expression
is evaluated to FALSE control is transferred to the first statement following the ELSE,
if present, or otherwise to the statement following the ENDIF.

Examples:

IF a < b THEN
PRINT "a is less than b"

59

Chapter 9. Program Statements and Structure

PRINT "a:";a;" b:";b
ENDIF

IF a < b THEN
PRINT "a is less than b"

ELSE
IF a=b THEN

PRINT "a equals b"
ELSE

PRINT "a is greater than b"
ENDIF

ENDIF

FOR/NEXT Statement
Syntax:

FOR <var> = <expr> TO <expr> [STEP <expr>]
NEXT <var>

Creates a loop that usually executes a specified number of times while automatically
increasing or decreasing a specified counter variable. The first expression is evaluated
and the result is stored in <var> which must be a simple integer or real variable. The
second expression is evaluated and stored in a temporary variable. If the STEP clause
is used, the expression following is evaluated and used as the loop increment. If it is
negative, the loop will count down.

The "body" of the loop (i.e. statements between the "FOR" and "NEXT" are executed
until the counter variable is larger than the terminating expression value. For nega-
tive STEP values, the loop will execute until the loop counter is less than the termi-
nation value. If the initial value of <var> is beyond the terminating value the body
of the loop is never executed. It is legal to jump out of FOR/NEXT loops. The is no
limit to the nesting of FOR/NEXT loops.

Examples:

FOR counter = 1 to 100 step .5
PRINT counter

NEXT counter

FOR var = min1 TO min+max STEP increment-adjustment
PRINT var

NEXT var

FOR x = 1000 TO 1 STEP 1
PRINT x

NEXT x

60

Chapter 9. Program Statements and Structure

WHILE..DO Statement
Syntax:

WHILE <bool expr> DO
ENDWHILE

This is a loop construct with the test at the "top" of the loop. Statements within the
loop are executed as long as <bool expr> is TRUE. The body of the loop will not be
executed if the boolean expression evaluates to FALSE when first executed.

Examples:

WHILE a<b DO is equivalent to 100 IF a>=b THEN 500
PRINT a PRINT a
a := a+1 a := a+1

ENDWHILE GOTO 100
500 REM

DIM yes:BOOLEAN
yes=TRUE
WHILE yes DO

PRINT "yes! ";
yes := POS <50

ENDWHILE

REM reverse the letters in word$
backward$:= ""
INPUT word$
WHILE LEN(word$) > 0 DO

backward$:= backward$ + RIGHT$(word$,1)
word$:= LEFT$(word$,LEN(word$)1)

ENDWHILE
word$:= backward$
PRINT word$

REPEAT..UNTIL Statement
Syntax:

REPEAT
UNTIL <bool expr>

This is a loop that has its test at the bottom of the loop. The statement(s) within the
loop are executed until the result of <bool expr> is TRUE. The body of the loop is
always executed at least one time.

Examples:

x = 0 is the same as x=0
REPEAT 100 PRINT x

PRINT x x=x+1
x=x+1 IF X <= 10 THEN 100

61

Chapter 9. Program Statements and Structure

UNTIL x>10

(* compute factorial: n! *)
temp := 1.
INPUT "Factorial of what number? ",n
REPEAT

temp := temp * n
n := n1

UNTIL n <= 1.0
PRINT "The factorial is "; temp

LOOP and ENDLOOP/EXITIF and ENDEXIT Statements
Syntax:

LOOP
ENDLOOP

EXITIF <bool expr> THEN <statements>
ENDEXIT

These related types of statements can be used to construct loops with test(s) located
anywhere in the body of the loop. The LOOP and ENDLOOP statements define the
body of the loop. EXITIF clauses can be inserted anywhere inside the loop to leave
the loop if the result of its test is true. Note that if there is no EXITIF clause, you will
create a loop that never ends.

The EXITIF clause evaluates an expression to a boolean result. If the result is FALSE,
the statement following the ENDEXIT is executed next. Otherwise, the statement(s)
between the EXITIF AND ENDEXIT are executed, then control is transferred to the
statement following the body of the loop. This exit clause is often used to perform
some specific function upon termination of the loop which depends on where the
loop terminated.

EXITIF statements are almost always used when LOOP..ENDLOOP is used, but they
can also be useful in ANY type of BASIC09 loop construct (e.g., FOR/NEXT, RE-
PEAT... UNTIL, etc.). Examples:

LOOP is equivalent to 100 REM top of loop
count=count+1 count=count+1

EXITIF count >100 THEN IF COUNT <= 100 then 200
done = TRUE done = TRUE

ENDEXIT GOTO 300
PRINT count 200 PRINT count
x = count/2 x = count/2

ENDLOOP GOTO 100
300 REM out of loop

INPUT x,y
LOOP

PRINT
EXITIF x < 0 THEN

62

Chapter 9. Program Statements and Structure

PRINT "x became zero first"
ENDEXIT

x := x1
EXITIF y < 0 THEN PRINT "y became zero first"
ENDEXIT

y := y1
ENDLOOP

GOTO Statement
Syntax:

GOTO <line #>

The GOTO unconditionally transfers execution flow to the line having the specified
number. Note that the line number is a constant, not an expression or a variable.

Example:

GOTO 1000

GOSUB/RETURN Statements
Syntax:

GOSUB <line #>
RETURN

The GOSUB statement transfers program execution to a subroutine starting at the
specified line number. The subroutine is executed until a RETURN statement is en-
countered, which causes execution to resume at the statement following the calling
GOSUB. Subroutines may be "nested" to any depth.

Example:

FOR n := 1 to 10
x := SIN(n)
GOSUB 100

NEXT n
FOR m := 1 TO 10

x := COS(m)
GOSUB 100

NEXT m
STOP

100 x := x/2
PRINT x
RETURN

63

Chapter 9. Program Statements and Structure

ON GOTO/GOSUB Statement
Syntax:

ON <int expr> GOTO <line #> {,<line #>}
ON <int expr> GOSUB <line #> {,<line #>}

These statements evaluate an integer expression and use the result to select a corre-
sponding line number from an ordered list. Control is then transferred to that line
number unconditionally in ON GOTO statements or as a subroutine in ON GOSUB
statements. These statements are similar to CASE statements in other languages.

The expression must evaluate to a positive INTEGER-type result having a value be-
tween 1 and n, n being the amount of line numbers in the list. If the result has any
other result, no line number is selected and the next sequential statement is executed.

Example:

(* spell out the digits 0 to 9 *)
DIM digit:INTEGER
A$="one digit only, please"
INPUT "type in a digit"; digit
ON digit+1 GOSUB 10,11,12,13,14,15,16,17,18,19
PRINT A$
STOP

(* names of digits *)
10 A$:= "ZERO"

RETURN
11 A$:= "ONE"

RETURN
12 A$:= "TWO"

RETURN
13 A$:= "THREE"

RETURN
14 A$:= "FOUR"

RETURN
15 A$:= "FIVE"

RETURN
16 A$:= "SIX"

RETURN
17 A$:= "SEVEN"

RETURN
18 A$:= "EIGHT"

RETURN
19 A$:= "NINE"

RETURN

64

Chapter 9. Program Statements and Structure

ON ERROR GOTO Statement
Syntax:

ON ERROR [GOTO <line #>]

This statement sets a "trap" that transfers control to the line number given when
a non-fatal run-time error occurs. If no ON ERROR GOTO has been executed in a
procedure before an error occurs, the procedure will stop and enter DEBUG mode.
The error trap can be turned of by executing ON ERROR without a GOTO.

This statement is often used in conjunction with the ERR function, which returns the
specific error code, and the ERROR statement which artificially generates "errors".
Note: the ERR function automatically resets to zero any time it is called.

Example:

(* List a file *)

DIM path,errnum: INTEGER, name: STRING[45], line: STRING[80]
ON ERROR GOTO 10
INPUT "File name? "; name
OPEN #path,name:READ
LOOP

READ #path, line
PRINT line

ENDLOOP

10 errnum=ERR
IF errnum = 211 THEN

(* end-of-file *)
PRINT "Listing complete."
CLOSE #path
END

ELSE
(* other errors *)
PRINT "Error number "; errnum
END

ENDIF

Execution Statements
Execution statements run procedures, stop execution of procedures, create shells, or
affect the current execution of the procedure.

Run Statement
Syntax:

RUN <proc name> [(<param> {,<param>})]
RUN <string var> [(<param> {,<param>})]

65

Chapter 9. Program Statements and Structure

This statement calls a procedure by name; when that procedure ends, control will
pass to the next statement after the RUN. It is most often used to call a procedure in-
side the workspace, but it can also be used to call a previously compiled (by the PACK
command) procedure or a 6809 machine language procedure outside the workspace.
The name can be optionally taken from a string variable.

Parameter Passing
The RUN statement can include a list of parameters enclosed in parentheses to be
passed to the called procedure. The called procedure must have PARAM statements
of the same size and order to match the parameters passed to it by the calling proce-
dure.

The parameters can be variables, constants, or the names of entire arrays or data
structures. They can be of any type, (EXCEPT variable of type BYTE but BYTE arrays
are O.K.). If a parameter is a constant or expression, it is passed "by value", i.e., it is
evaluated and placed in a temporary storage location, and the address of the tem-
porary storage is passed to the called procedure. Parameters passed by value can be
changed by the receiving procedure, but the changes are not reflected in the calling
procedure.

If the parameter is the name of a variable, array, or data structure, it is passed by
"reference", i.e., the address of that storage is sent to the called procedure and thus
the value in that storage may be changed by the receiving procedure. These changes
are reflected in the calling procedure.

Calling External Procedures
If the procedure named by RUN can’t be found in the workspace, BASIC09 will check
to see if it was loaded by OS-9 outside the workspace. If it isn’t found there, BASIC09
will try to find a disk file having the same name in the current execution directory,
load it, and run it. In either case, BASIC09 checks to see if the called procedure is
a BASIC09 I-code module or a 6809 machine language module, and executes it ac-
cordingly. If it is a 6809 machine language module, BASIC09 executes a JSR instruc-
tion to its entry point and the module is executed as 6809 native code. The machine
language routine can return to the original calling procedure by executing an RTS
instruction. The diagram on the next page shows what the stack frame passed to
machine-language subroutines looks like.

After an external procedure has been called but is no longer needed, the KILL state-
ment should be used to get rid of it so its memory space can be used for other pur-
poses.

+----------------------+ ^
| | |

higher addresses

| more parameters |

| |
+----------------------+ ---
| | |

66

Chapter 9. Program Statements and Structure

| size of 1st param | |
+ - - - - - - - + 4 bytes
| addr of 1st param | |
| | |
+----------------------+ ---
| | |
| parameter count | 2 bytes
| | |
+----------------------+ ---
| | |
| return address | 2 bytes
| | |
+----------------------+ --- <- 6809 Stack Pointer

Register value

Figure 9-1. Stack Frame Passed to Machine Language Procedures

Machine language modules return error status by setting the "C" bit of the MPU con-
dition codes register, and by setting the B register to the appropiate error code. For
an example of a machine language subroutine ("INKEY"), See Appendix A.

Example of use of the RUN statement:

PROCEDURE trig_table
num1 := 0 \ num2 := 0
REPEAT

RUN display(num1,SIN(num1))
RUN display(num2,COS(num2))
PRINT

UNTIL num1 > 1
END

PROCEDURE display
PARAM passed,funcval
PRINT passed;":";funcval,
passed := passed + 0.1
END

KILL Statement
Syntax:

KILL <str expr>

This statement is used to "unlink" an external procedure, possibly returning system
memory, and remove it from BASIC09’s procedure directory. If the procedure is in-
side the workspace, nothing happens and no error is generated. KILL can be used
with auto-loading PACKed procedures as an alternative to CHAIN when program
overlay is desired.

67

Chapter 9. Program Statements and Structure

Warning

1. It can be fatal to OS-9 to KILL a procedure that
is still "active".

2. When KILL is used together with a RUN state-
ment, the RUN statement MUST use the same
string variable which contains the name of the
procedure. See the first example below:

Examples:

LET procname$="average"
RUN procname$
KILL procname$

INPUT "Which test do you want to run? ",test$
RUN test$
KILL test$

CHAIN Statement
Syntax:

CHAIN <str expr>

The CHAIN statement performs an OS-9 "chain" operation on the SHELL, passing
the specified string as an argument. This causes BASIC09 to be exited, unlinked, and
its memory returned to OS-9. The string should evaluate to the name of an executable
module (such as BASIC09), passing parameters if appropriate.

CHAIN can begin execution of any module, not just BASIC09. It executes the module
indirectly through the Shell in order to take advantage of Shell’s parameter process-
ing. This has the side-effect of leaving an extra "incarnation" of the Shell active. Pro-
grams that repeatedly chain to each other eventually find all of memory filled with
waiting shells. This can be prevented by using the "ex" option of the Shell. Consult
the OS-9 User’s Guide for more details on the capabilities of the shell.

Files that are open when a CHAIN occurs are not closed. However, the OS-9 Fork
call will only pass the standard I/O paths (0,1,2) to a child process. Therefore, if it is
necesary to pass an open path to another program segment, the "ex" option of Shell
must be used.

Examples:

CHAIN "ex BASIC09 menu"

CHAIN "BASIC09 #10k sort (""datafile"",""tempfile"")"

CHAIN "DIR /D0"

68

Chapter 9. Program Statements and Structure

CHAIN "Dir; Echo *** Copying Directory ***; ex basic09 copydir"

SHELL Statement
Syntax:

SHELL <str expr>

This statement allows BASIC09 programs to run any OS-9 command or program.
This gives access to virtually any OS-9 function including multiprogramming, utility
commands, terminal, and I/O control, and more. Consult the "OS-9 User’s Guide"
for a detailed discussion of OS-9 standard commands.

The SHELL statement requests OS-9 to create a new process, initially executing the
"shell", which is the OS-9 command interpreter. The shell can then call any program
in the system (subject to the normal security functions). The string expression is eval-
uated and passed to the shell to be executed as a command line. (just as if it had
been typed in). If the string is null, BASIC09 is temporarily suspended and the shell
process displays prompts and accepts commands in its normal manner. When the
shell process terminates, BASIC09 becomes active again and resumes execution at
the statement following the SHELL statement.

Here are a few examples of using the shell from BASIC09:

SHELL "copy file1 file2" sequential execution

SHELL "copy file1 file2&" concurrent execution

SHELL "edit document" calling text editor

SHELL "asm source o=obj ! spool &" concurrent assembly

N:=5
SHELL "kill "+STR$(N)

file$:= "/d1/batch_jobs" concurrent execution of a
SHELL file$ + " -p >/p &" batch procedure file

END Statement
Syntax:

END [<output list>]

This statement ends execution of the procedure and returns to the calling procedure,
or to BASIC09 command mode if it was the highest level procedure. If an output
list is given, it also works the same as the PRINT statement. END is an executable

69

Chapter 9. Program Statements and Structure

statement and can be used several times in the same procedure. END is optional: it is
not required at the "bottom" of a procedure.

Examples:

END

END "I have finished execution"

Stop Statement
Syntax:

STOP [<output list>]

This statement immediately terminates execution of all procedures and returns to the
command mode. If an output list is given it also works like a PRINT statement.

BYE Statement
Syntax:

BYE

This statement ends execution of the procedure and terminates BASIC09. Any open
files are closed, and any unsaved procedures or data in the workspace will be lost.
This command is especially useful for creating PACKed programs and/or programs
to be called from OS-9 procedure files.

Warning
This command causes BASIC09 to abort. It should only be used if the
program has been saved before it is tested!

ERROR Statement
Syntax:

ERROR(<integer expr>)

This statement generates an error having the error code specified by the result of eval-
uation of the expression. ERROR is often used for testing error routines. For details
on error handling see the ON ERROR GOTO statement description.

70

Chapter 9. Program Statements and Structure

PAUSE Statement
Syntax:

PAUSE [<output list>]

PAUSE suspends execution of the procedure and causes BASIC09 to enter Debug
Mode. If an output list is given it also works like a PRINT statement.

<output> BREAK IN PROCEDURE <procedure name>

The Debug Mode "CONT" command can be used to resume procedure execution at
the following statement.

Examples:

PAUSE

PAUSE "now outside main loop"

CHD and CHX Statements
Syntax:

CHD <str expr>
CHX <str expr>

These statements change the current default Data or Execution directory, respectively.
The string must specify the pathlist of a file which has the DIR attribute. For more
information on the OS-9 directory structure, consult the OS-9 User’s Guide.

DEG and RAD Statements
Syntax:

DEG
RAD

These statements set the procedure’s state flag to assume angles stated in degrees or
radians in SIN, COS, TAN, ACS, ASN, and ATN functions. This flag applies only to
the currently active procedure. The default state is radians.

BASE 0 and BASE 1 Statements
Syntax:

BASE 0
BASE 1

71

Chapter 9. Program Statements and Structure

These statements indicate whether a particular procedure’s lowest array or data
structure index (subscript) is zero or one. The default is one. These statements
do not affect the string operations (e.g., MID$, RIGHT$, OR LEFT$) where the
beginning character of a string is always index one.

TRON and TROFF Statements
Syntax:

TRON
TROFF

These statements turn the trace mode on or off, and are useful for debugging. When
trace mode is turned on, each statement is decompiled and printed before execution.
Also, the result of each expression evaluation is printed as it occurs.

Comment Statements
Syntax:

REM <chars>
(* <chars> [*)]

These statements are used to put comments in programs. The second form of the
statement is for compatibility with PASCAL programs. Comments are retained in
the I-code but are removed by the PACK compile command. The "!" character can
be typed in place of the keyword REM when editing programs. The compiler trims
away extra spaces following REM to conserve memory space.

Examples:

REM this is a comment

(* This is also a comment *)

(* This is another kind of comment

Declarative Statements
The DIM, PARAM, and TYPE statements are called declarative statements because they
are used to define and/or declare variables, arrays, and complex data structures.
The DIM and PARAM statements are almost identical, the difference being that DIM
are used to declare storage used exclusively within the procedure, and the PARAM
statement is used to declare variables received from another calling procedure.

When do you need to use the DIM statement? You don’t need to for simple variables
of type REAL because this is the default format for undeclared variables. You also

72

Chapter 9. Program Statements and Structure

don’t need to for 32-character STRING type variables (any name ending with a "$" is
automatically assigned this type). Even though you don’t have to declare variables
in these two cases, you may want to anyway to improve your program’s internal
documentation. Those things you must declare are:

1. Any simple variables of type BYTE, INTEGER, or BOOLEAN.

2. Any simple STRING variables shorter or longer than 32 characters.

3. Arrays of any type.

4. Complex data structures of any type.

The TYPE statement does not really create variable storage. Its purpose is to describe
a new data structure type that can be used in DIM or PARAM statements in addition
to the five atomic data types built-in to BASIC09. Therefore, TYPE is only used in
programs that use complex data structures.

DIM Statement
Syntax:

DIM <decl seq> {; <decl seq>}
<decl seq> := <decl> {, <decl>} : <type>}
<decl> := <name> [, <subscript>]
<subscr> := (<const> [,<const> [,<const>]])
<type> := BYTE | INTEGER | REAL | BOOLEAN | STRING | STRING <max
len> | <user defined type>
<user def> := user defined by TYPE statement

The DIM statement is used to declare simple variables, arrays, or complex data struc-
tures of the five atomic types or any user-defined type. During compilation, BASIC09
assigns storage required for all variables declared in DIM statements.

Declaring Simple Variables

Simple variables are declared by using the variable name in a DIM statement without
a subscript. If variables are not explicitly declared, they are automatically assumed to
be REAL, or tpe STRING[32] if the variable name ends with a "$" character. Therefore
all simple variables of other types must be explicitly declared. For example:

DIM logical:BOOLEAN

Several variables can be declared in sequence with a :<type> following a group of
the same type:

DIM a,b,c: STRING

In addition, several different types can be declared in a single DIM statement by
using a semicolon ";" to separate different types:

73

Chapter 9. Program Statements and Structure

DIM a,b,c:INTEGER; n,m:decimal; x,y,z:BOOLEAN

In this example a, b, and c are type INTEGER, n and m are type "decimal" (a user-
defined type), and x, y, and z are type BOOLEAN. String variables are declared the
same way except an optional maximum string length can be specified. If a length is
not explicitly given, 32 characters are assumed:

DIM name:STRING[40]; address,city:STRING; zip:REAL

In this case, "name" is a string variable of 40 characters maximum, "address" and
"city" are string variables of 32 characters each, and "zip" is a real variable.

Array Declarations

Arrays can have one, two, or three dimensions. The DIM statement format (including
type grouping) is the same as for simple variables except each name is followed by
subscript(s) to indicate its size. The maximum subscript size is 32767. Simple variable
and array declarations can be mixed in the same DIM statement:

DIM a(10),b(20,30),c:INTEGER; x(5,5,5):STRING[12]

In the example above, "a" is an array of 10 integers, "b" is a 20 by 30 matrix of integers,
"c" is a simple integer variable, and "x" is a three-dimensional array of 12-character
strings.

Arrays can be any atomic or user-defined type. By declaring arrays of user-defined
types, structures of arbitrary complexity and shape can be generated. Here’s an exam-
ple declaration that generates a doubly-linked list of character strings. Each element
of the array consists of the string containing the data and two integer "pointers".

TYPE link_pointers = fwd,back: INTEGER
TYPE element = data: STRING[64]; ptr: link_pointers
DIM list(100): element

(* make a circular list *)
BASE0
FOR index := 0 TO 99

list(index).data := "secret message " + STR$(index)
list(index).ptr.fwd := index+1
list(index).ptr.back := index1

NEXT index
(* fix the ends *)
list(0).ptr.back := 99
list(99).ptr.fwd := 0

(* Print the list *)
index=0
REPEAT

PRINT list(index).data
index := list(index).ptr.fwd

UNTIL index=0
END

74

Chapter 9. Program Statements and Structure

PARAM Statement
Syntax: Same as DIM statement

PARAM is identical to the DIM statement, but it does not create variable storage.
Instead, it describes what parameters the "called" procedure expects to receive from
the "calling" procedure.

The programmer must insure that the total size of each parameter (as evaluated by
the RUN statement in the calling procedure) conforms to the amount of storage ex-
pected for each parameter in the called procedure as specified by the PARAM state-
ment. BASIC09 checks the size of each parameter (to prevent accidental access to stor-
age other than the parameter) but DOES NOT CHECK TYPE. However, in most cases
the programmer should ensure that the parameters evaluated in the RUN statement
and sent to the called procedure agree exactly with the PARAM statement specifica-
tion with respect to: the number of parameters, their order, size, shape, and type.

Because type-checking is not performed, if you really know what you are doing you
can make the parameter passing operation perform useful but normally illegal type
conversions of identically-sized data structures. For example, passing a string of 80
characters to a procedure expecting a BYTE array having 80 elements assigns the
numeric value of each character in the string to the corresponding element of the
byte array.

TYPE Statement
Syntax:

TYPE <type decl> {; <type decl>}
<type decl> := <field name> . <decl> : <type>}
<decl> := <name> [, <subscript>]
<subscript> := (<const> [,<const> [,<const>]])
<type> := BYTE | INTEGER | REAL | BOOLEAN | STRING | STRING [<max
len>] | <user defined>
<user defined> := user defined by TYPE statement

This statement is used to define new data types. New data types are defined as a
"vector" (a one-dimensional array) of previously defined types. This structure differs
from an array in that the various elements may be of different types, and the elements
are accessed by field name instead of an array index. Here’s an example:

TYPE cust_recd := name,address(3):STRING; balance

This example creates a new data type called "cust_recd" which has three named
fields: a field called "name" which is a string, a field called "address" which is a vector
of three strings; and a field called "balance" which is a (default) REAL value

The TYPE statement can include previously-defined types so very complex non-
rectangular data structures can be created such as lists, trees, etc. This statement does
not create any variable storage itself; the storage is created when the newly-defined
type is used in a DIM statement. The example show below creates an array having
250 elements of type "cust_recd" that was defined above:

DIM customer_file(250):cust_recd

75

Chapter 9. Program Statements and Structure

To access elements of the array in assignment statements, the field name is used as
well as the index:

name$ = customer_file(35).name
customer_file(N+1).address(3) = "New York, NY"
customer_file(X).balance= 125.98

The complex structure allows creation of data types appropriate to the job at hand
by providing more natural organization and association of data. Additionally, the
position of the desired element is known and defined at compilation-time and need
not be calculated at run time, unlike arrays, and can therefore be accessed faster than
arrays.

76

Chapter 10. Input and Output Operations

Files and Unified Input/Output
A file is a logical concept for a sequence of data which is saved for convenience in
use and storage. File data may be pure binary data, textual data (ASCII characters),
or any other useful information. Hardware input/output ("I/O") devices used by OS-
9 also work like files, so you can generally use any I/O facility regardless of whether
you are working with disk files or I/O devices such as printers. This single interface
standard for any device and simple communication facilities allow any device to
be used with any other device. This concept is known as "unified I/O". Note that
unified I/O can benefit routine programming. For example: file operations can be
debugged by communicating with a terminal or printer instead of a storage device,
and procedures which normally communicate with a terminal can be tested with data
coming from and sent to a storage device.

BASIC09 normally works with two types of files: sequential files and random-access
files.

A sequential file sends or receives (WRITE/READ) textual data only in order. It is not
generally possible to start over at the beginning of a sequential file once a number of
bytes have been accessed (many I/O devices such as printers are necessarily sequen-
tial). A sequential file contains only valid ASCII characters; the READ and WRITE
commands perform format conversion similar to that done automatically in INPUT
and PRINT commands. A sequential file contains record-delimiter characters (car-
riage return) which separate the data created by different WRITE operations. Each
WRITE command will send a complete sequential-file record, which is an arbitrary
number of characters terminated by a carriage return. Each READ reads all characters
up to the next carriage return.

A random-access file sends and receives (PUT/GET) data in binary form exactly as it
is internally represented in BASIC09. This minimizes both the time involved in con-
verting the data to and from ASCII representation, as well as reducing the file space
required to store the data. It is possible to PUT and GET individual bytes, or a sub-
structure of many bytes (in a complex structure). The GET structure statement merely
recovers the number of bytes associated with that type of structure. It is possible to
move to a particular byte in a random-access file (using SEEK) and to begin to PUT
or GET sequentially from that point (in general, "SEEK #path,0" is equivalent to the
REWIND used in some forms of BASIC). Since the random-access file contains no
record-separators to indicate the size of particular elements of the file, the program-
mer should use the SIZE function to determine the size of a single element, then use
SEEK to move to the desired element within the file.

A new file is made on a storage device by executing CREATE. Once a file exists,
the OPEN command is used to notify the operating system to set up a channel to
the desired device and return that path number to the BASIC09 program. This chan-
nel number is then used in file-access operations (e.g., READ, WRITE, GET, PUT,
SEEK, etc.). When the programmer is finished with the file, it should be terminated
by CLOSE to assure that the file system has updated all data back onto magnetic
media.

77

Chapter 10. Input and Output Operations

I/O Paths
A "path" is a description of a "channel" through which data flows from a given pro-
gram outward or from some device inward. In order for data to flow to or from a
device, there must be an associated OS-9 device driver — see the OS9 Users Manual.
When a path is created, OS-9 returns a unique number to identify the path in subse-
quent file operations. This "path number" is used by the I/O statements to specify the
file to be used. Three path numbers have special meanings because they are "standard
I/O paths" representing BASIC09’s interactive input/output (your terminal). These
are automatically "opened" for you and should not be closed except in very special
circumstances. The standard I/O path numbers are:

0 Standard Input (Keyboard)

1 Standard Output (Display)

2 Standard Error/Status (Display)

The table below is a summary of the I/O statements within BASIC09 and their gen-
eral usage. This reflects typical usage; most statements can be used with any I/O
device or file. Sometimes certain statements are used in unusual ways by advanced
programmers to achieve certain special effects.

Statement Generally Used With Data Format (File Type)

INPUT Keyboard (interactive input) Text (Sequential)

PRINT Terminals, Printers Text (Sequential)

OPEN Disk Files and I/O Devices Any

CREATE Disk Files and I/O Devices Any

CLOSE Disk Files and I/O Devices Any

DELETE Disk Files Any

SEEK Disk Files Binary (Random)

READ Disk Files Text (Sequential)

WRITE Disk Files Text (Sequential)

GET Disk Files and I/O Devices Binary (Random)

PUT Disk Files and I/O Devices Binary (Random)

INPUT Statement
Syntax:

INPUT [#<int expr>,] ["<prompt>",] <input list>

This statement accepts input during the execution of a program. The input is nor-
mally read from the standard input device (terminal) unless an optional path number

78

Chapter 10. Input and Output Operations

is given. When the INPUT statement is encountered, program execution is suspended
and a "?" prompt is displayed. If the optional prompt string is given, it is displayed
instead of the normal "?" prompt. This means that the INPUT statement is really both
an input and outout statement. Therefore, if a path other than the default standard
input path is used, the path should be open in UPDATE mode. This makes INPUT
dangerous if used on disk files, unless you like prompts in your data (use READ).

The data entered is assigned in order to the variable names in the order they appear
in the input list. The variables can be of any atomic type, and the input data must be
of the same (or compatible) type. The line is terminated by a carriage return. There
must be at least as many input items given as variables in the input list. The length
of the input line cannot exceed 256 characters.

If any error occurs (type mismatch, insufficient amount of data, etc.), the message:

INPUT ERROR RETYPE

is displayed, followed by a new prompt. The entire input line must then be reentered.

The INPUT statement uses OS-9’s line input function (READLN) which performs
line editing such as backspace, delete, end-of-file, etc. To perform input WITHOUT
editing (i.e., to read pure binary data), use the GET statement.

Examples:

INPUT number,name$,location

INPUT #14, "What is your selection", choice

INPUT "What’s your name? ",name$

Here’s how to read a single character (without editing) from the terminal (path #0):

DIM char:STRING[1]
GET #0,char

For a function to test if data is available from the keyboard without "hanging" the
program, see the "INKEY" assembly language program included in Appendix A.

PRINT Statement
Syntax:

PRINT <output list>
PRINT #<int expr>, <output list>
PRINT USING <str expr>, <output list>
PRINT #<int expr>, USING <str expr>, <output list>

This statement outputs the values of the items given in the output list to the standard
output device (path #1, the terminal) unless another path number is specified.

The output list consists of one or more items separated by commas or semicolon
characters. Each item can be a constant, variable, or expression of any atomic type.
The PRINT statement evaluates each item and converts the result to corresponding

79

Chapter 10. Input and Output Operations

ASCII characters which are then displayed. If the separator character following the
item is a semicolon, the next item will be displayed without any spacing in between.
If a comma is used, spaces are output so the next item starts at the next "tab" zone.
The tab zones are 16 characters long starting at the beginning of the line. If the line
is terminated by a semicolon, the usual carriage return following the output line is
inhibited.

The "TAB(expr)" function can be used as an item in the output list, which outputs the
correct number of spaces to cause the next item to start in the print column specified
by the result of the expression. If the output line is already past the desired tab po-
sition, the TAB is ignored. A related function, "POS", can be used in the program to
determine the output position at any given time. The output columns are numbered
from one to a maximum of 255. The size of BASIC09’s output buffer varies according
to stack size at the moment. A prectical values is at least 512 characters.

The PRINT USING form of this statement is described at the end of this chapter.

Examples:

PRINT value,temp+(n/2.5),location$

PRINT #printer_path,"The result is "; n

PRINT "what is " + name$ + "’s age? ";

PRINT "index: ";i;TAB(25);"value: ";value

PRINT USING "R10.2,X2,R5.3",x,y

PRINT #outpath USING fmt$,count,value

(* print an 80character line of all dashes *)
REPEAT

PRINT "";
UNTIL POS >= 80
PRINT

OPEN Statement
Syntax:

OPEN #<int var>,"<str expr>" [: <access mode>]
<access mode> := <mode> ! <mode> + <access mode>
<mode> := READ ! WRITE ! UPDATE ! EXEC ! DIR

This statement issues a request to OS-9 to open an I/O path to an existing file or
device. The STRING expression is evaluated and passed to OS-9 as the descrip-
tive pathlist.The variable name specified must be DIMensioned as type INTEGER
or BYTE and is used "receive" the "path number" assigned to the path by OS-9. This
path number is used to reference the specific file/device in subsequent input/output
statements.

80

Chapter 10. Input and Output Operations

The OPEN statement may also specify the path’s desired "access mode" which can be
READ, WRITE, UPDATE, EXEC, or DIR. This defines which direction I/O transfers
will occur. If no access mode is specified, UPDATE is assumed and both reading and
writing are permitted. The DIR mode allows OS-9 directory type-files to be accessed
but should NOT be used in combination with WRITE or UPDATE modes. The EXEC
mode causes the current execution directory to be used instead of the current data
directory. Refer to the "OS-9 User’s Guide" for more information on how files access
modes.

Examples:

DIM printer_path:BYTE; name:STRING[24]
name="/p"
OPEN #printer_path,name:WRITE
PRINT #printer_path,"Mary had a little lamb"
CLOSE #printer_path

DIM inpath:INTEGER
dev$="/winchester/"
INPUT name$
OPEN #inpath,dev$+name$:READ

OPEN #path:userdir$:READ+DIR

OPEN #path,name$:WRITE+EXEC

CREATE Statement
Syntax:

CREATE #<int var>,"<str expr>" [: <access mode>]
<access mode> := <mode> ! <mode> + <access mode>
<mode> := WRITE ! UPDATE ! EXEC

The CREATE statement is used to create a new file on a multifile mass storage device
such as disk or tape. If the device is not of multifile type, this statement works like an
"OPEN" statement. The variable name is used to receive the path number assigned by
OS-9 and must be of BYTE or INTEGER type. The STRING expression is evaluated
and passed to OS-9 to be used as the descriptive pathlist.

The "access mode" defines the direction of subsequent I/O transfers and should be
either WRITE or UPDATE. "UPDATE" mode allows the file to be either read or writ-
ten.

OS-9 has a single file type that can be accessed both sequentially OR at random.
Files are byte-addressed, so no explicit "record" length need be given (see GET and
PUT statements). When a new file is created, it has an initial length of zero. Files are
expanded automatically by PRINT, WRITE, or PUT statements that write beyond the
current "end of file". File size may be set explicitly using the OS9 statement.

Examples:

CREATE #trans,"transactions":UPDATE

81

Chapter 10. Input and Output Operations

CREATE #spool,"/user4/report":WRITE

CREATE #outpath,name$:UPDATE+EXEC

Close Statement
Syntax:

CLOSE #<int expr> {,#<int expr>}

The CLOSE statement notifies OS-9 that one or more I/O paths are no longer needed.
The paths are specified by their number(s). If the path closed used a non-sharable
device (such as a printer), the device is released and can be assigned to another user.
The path must have been previously established by means of the OPEN or CREATE
statements.

Paths #0, #1, and #2 (the standard I/O paths) should never be closed unless the user
immediately opens a new path to take over the Standard Path number.

Examples:

CLOSE #master,#trans,#new_master

CLOSE #5,#6,#9

CLOSE #1 \(* closes standard output path *)
OPEN #path,"/T1" \(* Permanently redirects Std Output *)

CLOSE #0 \(* closes standard input path *)
OPEN #path,"/TERM" \(* Permanently redirects Std Input *)

DELETE Statement
Syntax:

DELETE <str expr>

This statement is used to delete a mass storage file. The file’s name is removed from
the directory and all its storage is deallocated, so any data on the file is permanently
lost. The string expression is evaluated and passed to OS-9 as the descriptive pathlist
of the file.

The user must have write permission for the file to be deleted. See the "OS-9 User’s
Guide" for more information.

Examples:

DELETE "/D0/old_junk"

82

Chapter 10. Input and Output Operations

name$="file55"
DELETE name$
DELETE "/D2/"+name$ (deletes file named "/D2/file55")

SEEK Statement
Syntax:

SEEK #<int expr num>,<real expr>

SEEK changes the file pointer address of a mass storage file, which is the address of
the next data byte(s) that are to be read or written next. Therefore, this statement is
essential for random access of data on files using the GET and PUT statements.

The first expression specifies the path number of the file and must evaluate to a byte
value. The second expression specifies the desired file pointer address, and must
evaluate to a REAL value in the range 0 <= result <= 2,147,483,648. Any fractional
part of the result is truncated. Of course, the actual maximum file size depends on
the capacity of the device.

Although SEEK is normally used with random-access files, it can be used to "rewind"
sequential files. For example:

SEEK #path,0

is the same as a "rewind" or "restore" function. This is the only form of the SEEK
statement that is generally useful for files accessed by READ and WRITE statements.
These statements use variable-length records, so it is difficult to know the address of
any particular record in the file.

Examples:

SEEK #fileone,filptr*2

SEEK #outfile,208894

SEEK #inventory,(part_num 1) * SIZE(inv_rcd)

WRITE Statement
Syntax:

WRITE #<int expr>,<output list>

This statement writes data in ASCII character format on a file/device. The first ex-
pression specifies the number of a path that was previously opened by a OPEN or
CREATE statement in WRITE or UPDATE mode.

83

Chapter 10. Input and Output Operations

The output list consists of one or more expressions separated by commas. Each ex-
pression can evaluate to any expression type. The result is then converted to an ASCII
character string and written on the specified path beginning at the present file pointer
which is updated as data is written.

If the output list has more than one item, ASCII null characters ($00) are written
between each output string. The last item is followed by a carriage return character.

Note that this statement creates variable-length ASCII records.

Examples:

WRITE #outpath,cat,dog,mouse

WRITE #xfile,LEFT$(A$,n),count/2

READ Statement
Syntax:

READ #<int expr num>,<input list>

This statement causes input data in ASCII character format to be read from a file or
device. The first expression specifies a path number. The path number which must
have been previously opened by an OPEN or CREATE statement in READ or UP-
DATE access mode (except the standard input path #0). Data is read starting at the
path’s current file pointer address which is updated as data is read.

This statement calls OS-9 to read a variable length ASCII record. Individual data
items within the record are converted to BASIC09’s internal binary format. These
results are assigned in order to the variables given in the input list. The input data
must match the number and type of the variables in the input list.

The individual data items in the input record are separated by ASCII null charac-
ters. Numeric items can also be delimited by commas or space characters. The input
record is terminated by a carriage return character.

Examples:

READ #inpath,name$,address$,city$,state$,zip

PRINT #1,"height,weight? "
READ #0,height,weight

Note: READ is also used to read lists of expressions in the program. See the DATA
statement section for details.

84

Chapter 10. Input and Output Operations

GET/PUT Statement
Syntax:

GET #<expr>,<struct name>
PUT #<expr>,<struct name>

The GET and PUT statements read and write fixed-size binary data records to files
or devices. These are the primary I/O statements used for random access input and
output.

The first expression is evaluated and used as the number of the I/O path which must
have previously been opened by an OPEN or CREATE statement. Paths used by PUT
statements must have been opened in WRITE or UPDATE access modes, and paths
used by GET statements must be in READ or UPDATE mode.

The statement uses exactly one name which can be the name of a variable, array, or
complex data structure. Data is written from, or read into, the variable or structure
named. The data is transferred in BASIC09’s internal binary format without conver-
sion which affords very high throughput compared to READ and WRITE statements.
Data is transferred beginning at the current position of the path’s file pointer (see
SEEK statement) which is automatically updated.

OS-9’s file system does not inherently impose record structures on random-access
files. All files are considered to be continuous sequences of addressable binary bytes.
A byte or group of bytes located anywhere in the file can be read or written in any
order. Therefore the programmer is free to use the basic file access system to create any
record structure desired.

Record I/O in BASIC09 is associated with data structures defined by DIM and TYPE
statements. The GET and PUT statements write entire data structures or parts of data
structures. A PUT statement, for example, can write a simple variable, an entire array,
or a complex data structure in one operation. To illustrate how this works, here is
an example based on a simple inventory system that requires a random access file
having 100 records. Each record must include the following information: the name of
the item (a 25-byte character string), the item’s list price and cost (both real numbers),
and the quantity on hand (an integer).

First it is necesary to use the TYPE statement to define a new data type that describes
such a record. For example:

TYPE inv_item=name:STRING[25];list,cost:REAL;qty:INTEGER

This statement describes a new record type called "inv_item" but does not cause vari-
able storage to be assigned for it. The next step is to create two data structures: an
array of 100 "records" of type "inv_item" to be called "inv_array" and a single work-
ing record called "work_rec":

DIM inv_array(100):inv_item
DIM work_rec:inv_item

You can manually count the number of bytes assigned for each type to calculate the
total size of each record. Sometimes these can become complicated and error-prone.
Also, any change in a TYPE definition could require recalculation. Fortunately, BA-
SIC09 has a built-in function:

85

Chapter 10. Input and Output Operations

SIZE(<name>)

that returns the number of bytes assigned to any variable, array, or complex
data structure. In our example, SIZE(work_rec) will return the number 37, and
SIZE(inv_array) will return 3700. The size function is often used in conjunction with
the SEEK statement to position a file pointer to a specific record’s address.

The procedure below creates a file called "inventory" and initializes it with zeroes
and nulls:

PROCEDURE makefile
TYPE inv_item = name:STRING[25]; list,cost:REAL; qty:INTEGER
DIM inv_array(100):inv_item
DIM work_rec:inv_item
DIM path:byte
CREATE #path,"inventory"
work_rec.name = ""
work_rec.list := 0.
work_rec.cost := 0.
work_rec.qty := 0
FOR n = 1 TO 100

PUT #path,work_rec
NEXT n
END

Notice that the assignment statements referenced each named "field" of work_rec by
name, but PUT referenced the record as a whole.

The subroutine below asks for a record number, then asks for data, and writes it in
the file at the specified record:

INPUT "Record number ?",recnum
INPUT "Item name? ",work_rec.name
INPUT "List price? ",work_rec.list
INPUT "Cost price? ",work_rec.cost
INPUT "Quantity? ",work_rec.qty
SEEK #path, (recnum 1) * SIZE(work_rec)
PUT #path,work_rec

This routine below uses a loop to read the entire file into the array "inv_array":

SEEK #path,0 \ (* "rewind" the file *)
FOR k = 1 TO 100

GET #path,inv_array(k)
NEXT k

Because ENTIRE STRUCTURES can be read, we can eliminate the FOR/NEXT loop
and do exactly the same thing by:

SEEK #path,0
GET #path,inv_array

The above example is a very simple case, but it illustrates the combined power of
BASIC09 complex data structures and the random access I/O statements. When fully
exploited, this system has the following important characteristics:

86

Chapter 10. Input and Output Operations

1. It is self-documenting. You can clearly see what a program does because struc-
tures have descriptive, named sub-structures.

2. It is extremely fast.

3. Programs are simplified and require fewer statements to perform I/O functions
than in other BASICs.

4. It is versatile. By creating appropriate data structures you can read or write
almost any kind of data in any file, including files created by other programs or
languages.

These advantages are possible because a single GET or PUT statement can move any
amount of data, organized any way you want.

Internal Data Statements

DATA/READ/RESTORE Statements
Syntax:

READ <input list>
DATA <expr> , { <expr> }
RESTORE [<line number>]

These statements provide an efficient way to build constant tables within a program.
DATA statements provide values, the READ statement assign the values to variables,
and RESTORE statements can be used to set which data statement is to be read next.

The DATA statements have one or more expressions separated by commas. They can
be located anywhere in a program. The expressions are evaluated each time the data
statements are read and can evaluate to any type. Here are some examples:

DATA 1.1,1.5,9999,"CAT","DOG"
DATA SIN(temp/25), COS(temp*PI)
DATA TRUE,FALSE,TRUE,TRUE,FALSE

The READ statement has a list of one or more variable names. When executed, it gets
"input" by evaluating the current expression in the current data statement. The result
must match the type of the variable. When all the expressions in a DATA statement
have been evaluated, the next DATA statement (in sequential order) is used. If there
are no more DATA statements following, processing "wraps around" to the first data
statement in the program.

The RESTORE statement used without a line number causes the first DATA statement
in the program to be used next. If it is used with a line number, the data statement
having that line number is used next.

Examples:

DATA 1,2,3,4
DATA 5,6,7,8

87

Chapter 10. Input and Output Operations

100 DATA 9,10,11,12
FOR N := 1 TO X

READ ARRAY(N)
NEXT N
RESTORE 100
READ A,B,C,D

Formatted Output: The Print Using Statement
BASIC09 has a powerful output editing capability useful for report generation and
other applications where formatted output is required. The output editing uses the
PRINT USING statement which has the following syntax:

PRINT [<expr#>,] USING <str expr> , <output list>

The optional path number expression can be used to specify the path number of any
output file or device. If it is omitted, the output is written to the standard output path
(usually the terminal).

The string expression is evaluated and used as a "format specification" which con-
tains specific formatting directives for each item in the "output list". The items in the
output list can be constants, variables, or expressions of any atomic type. BLANKS
ARE NOT ALLOWED IN FORMAT STRINGS! As each output item is processed, it
is matched up with a specification in the format list. The type of each expression
result must be compatible with the corresponding format specification. If there are
fewer format specifications than items in the output list, the format specification list
is repeated again from its beginning as many times as necessary.

A format string has one or more format specifications which are separated by com-
mas. There are two kinds of specifications: ones that control output editing of an item
from the output list, and ones that cause an output function by themselves (such as
tabbing and spacing). There are six basic output editing directives. Each has a corre-
sponding one-letter identifier:

R real format

E exponential format

I integer format

H hexadecimal format

S string format

B boolean format

The identifier letter is followed by a constant number called the "field width". This
number indicates the exact number of print columns the output is to occupy and
must allow for the data AND "overhead" character positions such as sign characters,
decimal points, exponents, etc. Some formats have additional mandatory or optional
parameters that control subfields or select editing options. One of these options is
"justification" which specifies whether the output is to "line up" on the left, right side,

88

Chapter 10. Input and Output Operations

or center of the output field. Fields are commonly right-justified in reports because it
arranges them into neat columns with decimal points aligned in the same position.

The abbreviations and symbols used in the syntax specifications are:

w Total field width 1 <= w <= 255

f Fraction field 1 <= w <= 9

j OPTIONAL justification < (left) > (right) ^ (center)

Real Format
Syntax:

Rw.fj

This format can be used for numbers of types REAL, INTEGER, or BYTE. The total
field width specification must include two overhead positions for the sign and dec-
imal point. The "f" specifies how many fractional digits to the right of the decimal
point are to be displayed. If the number has more significant digits than the field al-
lows for, the undisplayed places are used to round the displayed digits. For example:

PRINT USING "R8.2", 12.349 gives 12.35

The justification modes are:

< Left justify with leading sign and trailing spaces. (default if justification mode
omitted)

> right justify with leading spaces and sign.

^ right justify with leading spaces and trailing sign (financial format)

Examples:

PRINT USING "R8.2 <",5678.123 5678.12
PRINT USING "R8.2>",12.3 12.30
PRINT USING "R8.2 <",555.9 555.90
PRINT USING "10.2^",6722.4599 6722.46
PRINT USING "R5.1","9999999" *****

Exponential Format
Syntax:

Ew.fj

89

Chapter 10. Input and Output Operations

This format prints numbers of types REAL, INTEGER, or BYTE in the scientific nota-
tion format using a mantissa and decimal exponent. The syntax and behavior of this
format is similar to the REAL format except the "w" field width must allow for eight
overhead positions for the mantissa sign, decimal point, and exponent characters.
The "<" and ">" justification modes are allowed and work the same way.

Example:

PRINT USING "E12.3",1234.567 1.235E+03

PRINT USING "E12.6>",0.001234 1.234000E-3

Integer Format
Syntax:

Iwj

This format is used to display numbers of types INTEGER or BYTE, and REAL num-
bers that are within range for automatic type conversion. The "w" field width must
allow for one position overhead for the sign. The justification modes are:

< left justify with leading sign and trailing spaces (default)

> right justify with leading spaces and sign

^ right justify with leading spaces and zeroes

Example:

PRINT USING "I4 <",10 10

PRINT USING "I4>",10 10

PRINT USING "I4^",10 010

Hexadecimal Format
Syntax:

Hwj

This format can be used to display the internal binary representation of ANY data
type, using hexadecimal characters. The "w" field width specification determines the
number of hexadecimal characters to output. Justification modes are:

90

Chapter 10. Input and Output Operations

< left justify with trailing spaces

> right justify, leading spaces

^ center justify

Because the number of bytes of memory used to represent data varies according to
type, the following specification make the most sense for each data type:

H2 boolean, byte (one byte)

H4 integer (two bytes)

H10 real (five bytes)

Hn*2 string of length n

Examples:

PRINT USING "H4",100 00C4

PRINT USING "H4",-1 FFFF

PRINT USING "H10",1.5 01D0000000

PRINT USING "H8","ABC" 414243

String Format
Syntax:

Swj

This format is used to display string data of any length. The "w" field width specifies
the total field size. If the string to be displayed is shorter than the field size, it is
padded with spaces according to the justification mode. If it is too long, it will be
truncated on the right side. The format specifications are:

< Left justify (default if mode omitted)

> right justify

^ Center justify

Examples:

PRINT USING "S8<","HELLO" HELLO

PRINT USING "S8>","HELLO" HELLO

91

Chapter 10. Input and Output Operations

PRINT USING "S8^","HELLO" HELLO

Boolean Format
Syntax:

Bwj

This format is used to display boolean data. The result of the boolean expression is
converted to the strings "TRUE" and "FALSE". The specification is otherwise identical
to the STRING format.

Control Specifications
Control specifications are useful for horizontal formatting of the output line. They are
not matched with items in the output list and can be used freely. The control formats
are

Tn Tab to column n

Xn Space n columns

’str’ Include constant string. The string must not include single or double
quotes, backslash or carriage return characters.

Warning: Control specifications at the end of the format specification list will NOT
be processed if all output items have been exhausted.

Example

PRINT USING "’addr’,X2,H4,X2,’data’,X2,H2",1000,100 prints

addr 03E8 data C4

Repeat Groups
Many times identical sequences of specifications are repeated in format specification
lists. The repeated groups can be enclosed in parentheses and preceded by a repeat
count. These repeat groups can be nested. Here are some examples:

"2(X2,R10.5)" is the same as "X2,R10.5,X2,R10.5"

"2(I2,2(X1,S4))" is the same as "I2,X1,S4,X1,S4,I2,X1,S4,X1,S4"

92

Chapter 11. Program Optimization

General Execution Performance of BASIC09
The BASIC09 multipass compiler produces a compressed and optimized low-level "I-
code" for execution. Compared to other BASIC languages program storage is greatly
decreased and execution speed is increased.

High-level language interpreters have a general reputation for slowness which is
probably not deserved. Because the BASIC09 I-code is kept at a powerful level, a
single, fast I-code interpretation will so that there is often result in many MPU in-
struction cycles (such as execution of floating-point arithmetic operations). Thus, for
complex programs there is little performance difference between execution of I-code
and straight machine-language instructions. This is generally not the case with tradi-
tional BASIC interpreters that have to "compile" from text as they run or even "tok-
enized" BASICs that must perform table-searching during execution. BASIC09 I-code
instructions that reference variable storage, statements, labels, etc., contain the actual
memory addresses so no table searching is ever required. Off course, BASIC09 fully
exploits the power of the 6809’s instruction set which was optimized for efficient ex-
ecution of compiler-produced code.

Because the BASIC09 I-code is interpreted, a variety of entry-time tests and run-time
tests and development aids are available to help in program development; aids not
available on most compilers. The editor reports errors immediately when they are en-
tered, the debugger allows debugging using the original program source statements
and names, and the I-code interpreter performs run-time error checking of things
such as array bound errors, subroutine nesting, arithmetic errors, and other errors
that are not detected (and usually crash) native-compiler-generated code.

Optimum Use of Numeric Data Types
Because BASIC09 includes several different numeric representations (i.e., REAL, IN-
TEGER, and BYTE) and does "automatic type conversions" between them, it is easy
to write expressions or loops that take at least ten times longer to execute than is nec-
essary. Some particular BASIC09 numeric operators (+, , *, /) and control structures
(FOR..NEXT) include versions for both REAL and INTEGER values. The INTEGER
versions, off course, are much faster and may have slightly different properties (e.g.,
INTEGER divides discard any remainder). Type conversions takes time so expres-
sions whose operands and operators are of the same type are more efficient.

BASIC09’s REAL (floaing point) math package provides excellent performance. A
special 40-bit binary floating point representation designed for speed and accuracy
was developed especially for BASIC09 after exhaustive research. The new CORDIC
technique is used to derive all transcendental functions (SIN, TAN, LOG, EXP, etc.).
This integer shit-and-add technique is faster and more consistantly accurate than the
commonly used series-expansion approximations.

Nonetheless, INTEGER operations are faster because they generally have
corresponding 6809 machine-language instructions. Overall program speed will
increase and storage requirements will decrease if INTEGERs are used whenever
possible. INTEGER arithmetic operations use the same symbols as REAL but
BASIC09 automatically selects the INTEGER operations when working with an

93

Chapter 11. Program Optimization

integer-value result. Only if all operands of an expression are of types BYTE or
INTEGER will the result also be INTEGER.

Sometimes, similar or identical results can be obtained in a number of different ways
at various execution speeds. For example, if the variable "value" is an integer, then
"value*2" will be a fast integer operation. However, if the expression is "value*2.0"
the value "2.0" will be represented as a REAL number, and the multiplication will be
a REAL multiplication. This will also require that the variable "value" will have to be
transformed into a REAL value, and finally the result of the expression will have to
be transformed back to an INTEGER value if it is to be assigned to a variable of that
type. Thus a single decimal point will slow this particular operation down by about
ten times!

Table 11-1. Arithmetic Functions Ranked by Speed

Operation Typical Speed (MPU Cycles)

INTEGER ADD OR SUBTRACT 150

INTEGER MULTIPLY 240

REAL ADD 440

REAL SUBTRACT 540

INTEGER DIVIDE 960

REAL MULTIPLY 990

REAL DIVIDE 3870

REAL SQUARE ROOT 7360

REAL LOGARITM OR EXPONENTIAL 20400

REAL SINE OR COSINE 32500

REAL POWER (^) 39200

This table can be used to deduce some interesting points. For example, "value*2"
is not optimum - "value+value" can produce the same result in less time because
multiplication takes longer than addition. Similarly, "value*value" or "SQ(value)" is
MUCH faster than the equivalent "value^2". Another interesting case is "x/2.0". The
REAL divide will cost 3870 cycles, but REAL multiplcation takes only 990 cycles. The
mathematical equivalent to division by a constant is multiplication by the inverse of
the constant. Therefore, using "X*0.5" instead is almost four times faster!

Looping Quickly
When BASIC09 identifies a FOR..NEXT loop structure with an INTEGER loop
counter variable, it uses a special integer version of the FOR..NEXT loop. This is
much faster than the REAL-type version and is generally preferable. Other kinds of
loops also run faster if INTEGER type variables are used for loop counters.

When writing program loops, remember that statements INSIDE the loop may be
executed many times for each single execution OUTSIDE the loop. Thus, any value
which can be computed before entering a loop will increase program speed.

94

Chapter 11. Program Optimization

Optimum Use of Arrays and Data Structures
BASIC09 internally uses INTEGER numbers to index arrays and complex data struc-
tures. If the program uses subscripts that are REAL type variables or expressions,
BASIC09 has to convert them to INTEGERs before they can be used. This takes addi-
tional time, so use INTEGER expressions for subscripts whenever you can.

Note that the assignment statement (LET) can copy identically sized data structures.
This feature is much faster than copying arrays or structures element-by-element in-
side a loop.

The PACK Command
The PACK command produces a compressed version of a BASIC09 procedure. De-
pending on the number of comments, line numbers, etc., programs will execute from
10% to 30% faster after being packed. Minimizing use of line numbers will even speed
up procedures that are unPACKed.

Eliminating Constant Expressions and Sub-Expressions
Consider the expression:

x = x+SQRT(100)/2

is exactly the same as the expression:

x = x+5

The subexpression "SQRT(100)/2" consists of constants only, so its result will not
vary regardless of the rest of the program. But every time the program is run, the
computer must evaluate it. This time can be significant, especially if the statement is
within a loop. Constant expressions or subexpressions should be calculated by the
programmer while writing the program (using DEBUG mode or a pocket calculator).

Fast Input and Output Functions
Reading or writing data a line or record at a time is much faster than a character at
a time. Also, the GET and PUT statements are much faster than READ and WRITE
statements when dealing with disk files. This is because GET and PUT use the exact
binary format used internally by BASIC09. READ, WRITE, PRINT, and INPUT must
perform binary-to-ASCII or ASCII-to-binary conversions which take time.

Professional Programming Techniques
One sure way to make a program faster is to use the most efficient algorithms possi-
ble. There are many good programming "cookbooks" that explain useful algorithms
with examples in BASIC or PASCAL. Thanks to BASIC09’s rich vocabulary you can
use algorithms written in either language with little or no adaptation.

95

Chapter 11. Program Optimization

BASIC09 also eliminates any possible excuse for not using good structured program-
ming style that produces efficient, reliable, readable, and maintainable software. BA-
SIC09 generates optimized code to be executed by the 6809 which is the most pow-
erful 8-bit processor in existence at the time of this writing. But a computer can only
execute what it is told to execute, and no language implementation can make up for
an inefficient program. An inefficient program is evidence of a lack of understanding
of the problem. The result is likely to be hard to understand and hard to update if
program specifications change (they always do). The identification of efficient algo-
rithms and their clear, structured expression is indicative of professionalism in soft-
ware design and is a goal in itself.

96

Appendix A. Sample Programs

PROCEDURE fibonacci
REM computes the first ten Fibonacci numbers
DIM x,y,i,temp:INTEGER

x:=0 \y:=0
FOR i=0 TO 10

temp:=y

IF i <>0 THEN
y:=y+x
ELSE y:=1
ENDIF

x:=temp
PRINT i,y

NEXT i

PROCEDURE fractions
REM by T.F. Ritter
REM finds increasinglyclose rational approximations
REM to the desired real value
DIM m:INTEGER

desired:=PI
last:=0

FOR m=1 TO 30000
n:=INT(.5+m*desired)
trial:=n/m
IF ABS(trialdesired) <ABS(lastdesired) THEN

PRINT n; "/"; m; " = "; trial,
PRINT "difference = "; trialdesired;
PRINT
last:=trial

ENDIF
NEXT m

PROCEDURE prinbi
REM by T.F. Ritter
REM prints the integer parameter value in binary
PARAM n:INTEGER
DIM i:INTEGER

FOR i=15 TO 0 STEP 1
IF n <0 THEN

PRINT "1";
ELSE PRINT "0";
ENDIF
n:=n+n

NEXT i
PRINT

END

PROCEDURE hanoi
REM by T.F. Ritter

97

Appendix A. Sample Programs

REM move n discs in Tower of Hanoi game
REM See BYTE Magazine, Oct 1980, pg. 279

PARAM n:INTEGER; from,to_,other:STRING[8]

IF n=1 THEN
PRINT "move #"; n; " from "; from; " to "; to_

ELSE
RUN hanoi(n1,from,other,to_)
PRINT "move #"; n; " from "; from; " to "; to_
RUN hanoi(n1,other,to_,from)

ENDIF

END

PROCEDURE roman
REM prints integer parameter as Roman Numeral
PARAM x:INTEGER
DIM value,svalu,i:INTEGER
DIM char,subs:STRING

char:="MDCLXVI"
subs:="CCXXII "
DATA 1000,100,500,100,100,10,50,10,10,1,5,1,1,0

FOR i=1 TO 7
READ value
READ svalu

WHILE x>=value DO
PRINT MID$(char,i,1);
x:=xvalue

ENDWHILE

IF x>=valuesvalu THEN
PRINT MID$(subs,i,1); MID$(char,i,1);
x:=xvalue+svalu

ENDIF

NEXT i
END

PROCEDURE eightqueens
REM originally by N. Wirth; here recoded from Pascal
REM finds the arrangements by which eight queens
REM can be placed on a chess board without conflict
DIM n,k,x(8):INTEGER
DIM col(8),up(15),down(15):BOOLEAN
BASE 0

(* initialize empty board *)
n:=0
FOR k:=0 TO 7 \col(k):=TRUE \NEXT k
FOR k:=0 TO 14 \up(k):=TRUE \down(k):=TRUE \NEXT k
RUN generate(n,x,col,up,down)
END

PROCEDURE generate
PARAM n,x(8):INTEGER

98

Appendix A. Sample Programs

PARAM col(8),up(15),down(15):BOOLEAN
DIM h,k:INTEGER \h:=0
BASE 0

REPEAT
IF col(h) AND up(nh+7) AND down(n+h) THEN

(* set queen on square [n,h] *)
x(n):=h
col(h):=FALSE \up(nh+7):=FALSE \down(n+h) := FALSE
n:=n+1
IF n=8 THEN

(* board full; print configuration *)
FOR k=0 TO 7

PRINT x(k); " ";
NEXT k
PRINT

ELSE RUN generate(n,x,col,up,down)
ENDIF

(* remove queen from square [n,h] *)
n:=n1
col(h):=TRUE \up(nh+7):=TRUE \down(n+h):=TRUE

ENDIF
h:=h+1

UNTIL h=8
END

PROCEDURE electric
REM reprogrammed from "ELECTRIC"
REM by Dwyer and Critchfield
REM Basic and the Personal Computer (AddisonWesley, 1978)
REM provides a pictorial representation of the
REM resultant electrical field around charged points
DIM a(10),b(10),c(10)
DIM x,y,i,j:INTEGER
xscale:=50./78.
yscale:=50./32.

INPUT "How many charges do you have? ",n
PRINT "The field of view is 050,050 (x,y)"
FOR i=1 TO n

PRINT "type in the x and y positions of charge ";
PRINT i;
INPUT a(i),b(i)

NEXT i
PRINT "type in the size of each charge:"
FOR i=1 TO n

PRINT "charge "; i;
INPUT c(i)

NEXT i

REM visit each screen position
FOR y=32 TO 0 STEP 1

FOR x=0 TO 78
REM compute field strength into v
GOSUB 10
z:=v*50.
REM map z to valid ASCII in b$
GOSUB 20

99

Appendix A. Sample Programs

REM print char (proportional to field)
PRINT b$;

NEXT x
PRINT

NEXT y
END

10 v=1.
FOR i=1 TO n

r:=SQRT(SQ(xscale*xa(i))+SQ(yscale*yb(i)))
EXITIF r=.0 THEN

v:=99999.
ENDEXIT
v:=v+c(i)/r

NEXT i
RETURN

20 IF z <32 THEN b$:=" "
ELSE

IF z>57 THEN z:=z+8
ENDIF
IF z>90 THEN b$:="*"
ELSE

IF z>INT(z)+.5 THEN b$:=" "
ELSE b$:=CHR$(z)

ENDIF
ENDIF

ENDIF
RETURN

PROCEDURE qsort1
REM quicksort, by T.F. Ritter
PARAM bot,top,d(1000):INTEGER
DIM n,m:INTEGER; btemp:BOOLEAN

n:=bot
m:=top

LOOP \REM each element gets the once over
REPEAT \REM this is a postinc instruction

btemp:=d(n) <d(top)
n:=n+1

UNTIL NOT (btemp)
n:=n1 \REM point at the tested element
EXITIF n=m THEN
ENDEXIT

REPEAT \REM this is a postdec instruction
m:=m1

UNTIL d(m) <=d(top) OR m=n
EXITIF n=m THEN
ENDEXIT

RUN exchange(d(m),d(n))
n:=n+1 \REM prepare for postinc
EXITIF n=m THEN
ENDEXIT

ENDLOOP

100

Appendix A. Sample Programs

IF n <>top THEN
IF d(n) <>d(top) THEN

RUN exchange(d(n),d(top))
ENDIF

ENDIF

IF bot <n1 THEN
RUN qsort1(bot,n1,d)

ENDIF
IF n+1 <top THEN

RUN qsort1(n+1,top,d)
ENDIF

END

PROCEDURE exchange
PARAM a,b:INTEGER
DIM temp:INTEGER

temp:=a
a:=b
b:=temp

END

PROCEDURE prin
PARAM n,m,d(1000):INTEGER
DIM i:INTEGER

FOR i=n TO m
PRINT d(i);

NEXT i
PRINT

END

PROCEDURE sortest
REM This procedure is used to test Quicksort
REM It fills the array "d" with randomly generated
REM numbers and sorts them.
DIM i,d(1000):INTEGER

FOR i=1 TO 1000
d(i):=INT(RND(100))

NEXT i

RUN prin(1,1000,d)

RUN qsort1(1,1000,d)

RUN prin(1,1000,d)

END

PROCEDURE structst

REM example of intermixed array and record structures
REM note that structure d contains 200 real elements

101

Appendix A. Sample Programs

TYPE a=one(2):REAL
TYPE b=two(10):a
TYPE c=three(10):b
DIM d,e:c

FOR i=1 TO 10
FOR j=1 TO 10

FOR k=1 TO 2
PRINT d.three(i).two(j).one(k)
d.three(i).two(j).one(k):=0.
PRINT e.three(i).two(j).one(k)
PRINT

NEXT k
NEXT j

NEXT i

REM this is a complete structure assignment
e:=d

FOR i=1 TO 10
FOR j=1 TO 10

FOR k=1 TO 2
PRINT e.three(i).two(j).one(k);

NEXT k
PRINT

NEXT j
NEXT i

END

PROCEDURE pialook
REM display PIA at address (T.F. Ritte)
REM made understandable by K. Kaplan

DIM address:INTEGER
INPUT "Enter PIA address: "; address
RUN side(address)
RUN side(adress+2)
END

PROCEDURE side
REM display side of PIA at address
PARAM address:INTEGER
DIM data:INTEGER

(* loop until control register input strobe
(* flag (bit 7) is set
REPEAT \ UNTIL LAND(PEEK(address+1),$80) <> 0
(* now read the data register
data := PEEK(address)
(* display data in binary
RUN prinbyte(data)
END

PROCEDURE prinbyte
REM print a byte as binary
PARAM n: INTEGER
DIM i: INTEGER

102

Appendix A. Sample Programs

n:= n*256
FOR i = 7 TO 0 STEP 1

IF n < 0 THEN PRINT "1";
ELSE PRINT "0";
ENDIF
n:= n + 1

NEXT i

PRINT
END

The following procedures demonstrate multiple-precision arithmetic, in this case us-
ing five integers to represent a twenty decimal digit number, with four fractional
places.

PROCEDURE mpadd
REM a+b=>c:five_integer_number (T.F. Ritter)
PARAM a(5),b(5),c(5):INTEGER
DIM i,carry:INTEGER

carry:=0
FOR i=5 TO 1 STEP 1

c(i):=a(i)+b(i)+carry
IF c(i)>=10000 THEN

c(i):=c(i)10000
carry:=1

ELSE carry:=0
ENDIF

NEXT i

PROCEDURE mpsub
PARAM a(5),b(5),c(5):INTEGER
DIM i,borrow:INTEGER

borrow:=0
FOR i=5 TO 1 STEP 1

c(i):=a(i)b(i)borrow
IF c(i) <0 THEN

c(i):=c(i)+10000
borrow:=1

ELSE borrow:=0
ENDIF

NEXT i

PROCEDURE mprint
PARAM a(5):INTEGER
DIM i:INTEGER; s:STRING

FOR i=1 TO 5
IF i=5 THEN PRINT ".";
ENDIF
s:=STR$(a(i))
PRINT MID$("0000"+s,LEN(s)+1,4);

NEXT i

103

Appendix A. Sample Programs

PROCEDURE mpinput
PARAM a(5):INTEGER
DIM n,i:INTEGER

INPUT "input ultraprecision number: ",b$
n:=SUBSTR(".",b$)

IF n <>0 THEN
a(5):=VAL(MID$(b$+"0000",n+1,4))
b$:=LEFT$(b$,n1)

ELSE a(5):=0
ENDIF

b$:="00000000000000000000"+b$
n:=1+LEN(b$)
FOR i=4 TO 1 STEP 1

n:=n4
a(i):=VAL(MID$(b$,n,4))

NEXT i

PROCEDURE mptoreal
PARAM a(5):INTEGER; b:REAL
DIM i:INTEGER

b:=a(1)
FOR i=2 TO 4

b:=b*10000
b:=b+a(i)

NEXT i
b:=b+a(5)*.0001

PROCEDURE Patch
(* Program to examine and patch any byte of a disk file *)
(* Written by L. Crane *)
DIM buffer(256):BYTE
DIM path,offset,modloc:INTEGER; loc:REAL
DIM rewrite:STRING
INPUT "pathlist? ",rewrite
OPEN #path,rewrite:UPDATE
LOOP

INPUT "sector number? ",rewrite
EXITIF rewrite="" THEN ENDEXIT

loc=VAL(rewrite)*256
SEEK #path,loc
GET #path,buffer
RUN DumpBuffer(loc,buffer)
LOOP

INPUT "change (sector offset)? ",rewrite
EXITIF rewrite="" THEN

RUN DumpBuffer(loc,buffer)
ENDEXIT
EXITIF rewrite="S" OR rewrite="s" THEN ENDEXIT

offset=VAL(rewrite)+1
LOOP
EXITIF offset>256 THEN ENDEXIT

modloc=loc+offset1
PRINT USING "h4,’ ’,h2",modloc,buffer(offset);
INPUT ":",rewrite

EXITIF rewrite="" THEN ENDEXIT

104

Appendix A. Sample Programs

IF rewrite <>" " THEN
buffer(offset)=VAL(rewrite)

ENDIF
offset=offset+1

ENDLOOP
ENDLOOP
INPUT "rewrite sector? ",rewrite
IF LEFT$(rewrite,1)="Y" OR LEFT$(rewrite,1)="y" THEN

SEEK #path,loc
PUT #path,buffer

ENDIF
ENDLOOP
CLOSE #path
BYE

PROCEDURE DumpBuffer
(* Called by PATCH *)
TYPE buffer=char(8):INTEGER
PARAM loc:REAL; line(16):buffer
DIM i,j:INTEGER
WHILE loc>65535. DO

loc=loc65536.
ENDWHILE
FOR j=1 TO 16

PRINT USING "h4",FIX(INT(loc))+(j1)*16;
PRINT ":";
FOR i=1 TO 8

PRINT USING "X1,H4",line(j).char(i);
NEXT i
RUN printascii(line(j))
PRINT

NEXT j

PROCEDURE PrintASCII
TYPE buffer=char(16):BYTE
PARAM line:buffer
DIM ascii:STRING; nextchar:BYTE; i:INTEGER
ascii=""
FOR i=1 TO 16

nextchar=line.char(i)
IF nextchar>127 THEN

nextchar=nextchar128
ENDIF
IF nextchar <32 OR nextchar>125 THEN

ascii=ascii+" "
ELSE

ascii=ascii+CHR$(nextchar)
ENDIF

NEXT i
PRINT " "; ascii;

PROCEDURE MakeProc
(* Generates an OS9 command file to apply a command *)
(* Such as copy, del, etc., to all files in a directory *)
(* or directory system. Author: L. Crane *)

DIM DirPath,ProcPath,i,j,k:INTEGER
DIM CopyAll,CopyFile:BOOLEAN
DIM ProcName,FileName,ReInput,ReOutput,response:STRING

105

Appendix A. Sample Programs

DIM SrcDir,DestDir,DirLine:STRING[80]
DIM Function,Options:STRING[60]
DIM ProcLine:STRING[160]

ProcName="CopyDir"
Function="Copy"
Options="#32k"
REPEAT

PRINT "Proc name ("; ProcName; ")";
INPUT response
IF response <>"" THEN

ProcName=TRIM$(response)
ENDIF

ON ERROR GOTO 100
SHELL "del "+ProcName

100 ON ERROR
INPUT "Source Directory? ",SrcDir
SrcDir=TRIM$(SrcDir)
ON ERROR GOTO 200
SHELL "del procmaker...dir"

200 ON ERROR
SHELL "dir "+SrcDir+" >procmaker...dir"
OPEN #DirPath,"procmaker...dir":READ
CREATE #ProcPath,ProcName:WRITE
PRINT "Function ("; Function; ")";
INPUT response
IF response <>"" THEN

Function=TRIM$(response)
ENDIF
INPUT "Redirect Input? ",response
IF response="y" OR response="Y" THEN

ReInput=" <" \ ELSE \ReInput=""
ENDIF
INPUT "Redirect Output? ",response
IF response="y" OR response="Y" THEN

ReOutput=">" \ ELSE \ReOutput=""
ENDIF
PRINT "Options ("; Options; ")";
INPUT response
IF response <>"" THEN

Options=TRIM$(response)
ENDIF
INPUT "Destination Directory? ",DestDir
DestDir=TRIM$(DestDir)
WRITE #ProcPath,"t"
WRITE #ProcPath,"TMode .1 pause"
READ #DirPath,DirLine
INPUT "Use all files? ",response
CopyAll=response="y" OR response="Y"
WHILE NOT(EOF(#DirPath)) DO

READ #DirPath,DirLine
i=LEN(TRIM$(DirLine))
IF i>0 THEN

j=1
REPEAT

k=j
WHILE j <=i AND MID$(DirLine,j,1) <>" " DO

j=j+1

106

Appendix A. Sample Programs

ENDWHILE
FileName=MID$(DirLine,k,jk)
IF NOT(CopyAll) THEN

PRINT "Use "; FileName;
INPUT response
CopyFile=response="y" OR response="Y"

ENDIF
IF CopyAll OR CopyFile THEN

ProcLine=Function+" "+ReInput+SrcDir+"/"+FileName
IF DestDir <>"" THEN

ProcLine=ProcLine+" "+ReOutput+DestDir+"/"+FileName
ENDIF
ProcLine=ProcLine+" "+Options
WRITE #ProcPath,ProcLine

ENDIF
WHILE j <i AND MID$(DirLine,j,1)=" " DO

j=j+1
ENDWHILE

UNTIL j>=i
ENDIF

ENDWHILE
WRITE #ProcPath,"TMode .1 pause"
WRITE #ProcPath,"Dir e "+SrcDir
IF DestDir <>"" THEN

WRITE #ProcPath,"Dir e "+DestDir
ENDIF
CLOSE #DirPath
CLOSE #ProcPath
SHELL "del procmaker...dir"
PRINT
INPUT "Another ? ",response

UNTIL response <>"Y" AND response <>"y"
IF response <>"B" AND response <>"b" THEN

BYE
ENDIF

* INKEY - a subroutine for BASIC09 by Robert Doggett

* Called by: RUN INKEY(StrVar)
* RUN INKEY(Path, StrVar)
* Inkey determines if a key has been typed on the given path
* (Standard Input if not specified), and if so, returns the next
* character in the String Variable. If no key has been type, the
* null string is returned. If a path is specified, it must be
* either type BYTE or INTEGER.

0021 TYPE set SBRTN+OBJCT
0081 REVS set REENT+1

0000 87CD005E mod InKeyEnd,InKeyNam,TYPE,REVS
,InKeyEnt,0

000D 496E6B65 InKeyNam fcs "Inkey"
D 0000 org 0 Parameters
D 0000 Return rmb 2 Return addr of caller
D 0002 PCount rmb 2 Num of params following
D 0004 Param1 rmb 2 1st param addr
D 0006 Length1 rmb 2 size
D 0008 Param2 rmb 2 2nd param addr

107

Appendix A. Sample Programs

D 000A Length2 rmb 2 size
0012 3064 InKeyEnt leax Param1,S
0014 EC62 ldd PCount,S Get parameter count
0016 10830001 cmpd #1 just one parameter?
001A 2717 beq InKey20 ..Yes; default path A=0
001C 10830002 cmpd #2 Are there two params?
0020 2635 bne ParamErr No, abort
0022 ECF804 ldd [Param1,S] Get path number
0025 AE66 ldx Length1,S
0027 301F leax -1,X byte available?
0029 2706 beq InKey10 ..Yes; (A)=Path number
002B 301F leax -1,X Integer?
002D 2628 bne ParamErr ..No; abort
002F 1F98 tfr B,A
0031 3068 InKey10 leax Param2,S
0033 EE02 InKey20 ldu 2,X length of string
0035 AE84 ldx 0,X addr of string
0037 C6FF ldb #$FF
0039 E784 stb 0,X Initialize to null str
003B 11830002 cmpu #2 at least two-byte str?
003F 2502 blo InKey30 ..No
0041 E701 stb 1,X put str terminator
0043 C601 InKey30 ldb #SS.Ready
0045 103F8D OS9 I$GetStt is there an data ready?
0048 2508 bcs InKey90 ..No; exit
004A 108E0001 ldy #1
004E 103F89 OS9 I$Read Read one byte
0051 39 rts
0052 C1F6 InKey90 cmpb #E$NotRdy
0054 2603 bne InKeyErr
0056 39 rts (carry clear)
0057 C638 ParamErr ldb #E$Param Parameter Error
0059 43 InKeyErr coma
005A 39 rts
005B 1A6926 emod
005E InKeyEnd equ *

108

Appendix B. Quick Reference

Table B-1. System Mode Commands

$ CHX EDIT LOAD RENAME

BYE DIR KILL MEM RUN

CHD E LIST PACK SAVE

Table B-2. Edit Mode Commands

+ <cr> c* l* r*

+* <line #> d q s

- <space> d* r s*

-* c l

Table B-3. Debug Mode Commands

$ DEG LET Q STEP

BREAK DIR LIST RAD TROFF

CONT END PRINT STATE TRON

Table B-4. Program Reserved Words

ABS DIR INT PEEK SQR

ACS DO INTEGER PI SQRT

ADDR ELSE KILL POKE STEP

AND END LAND POS STOP

ASC ENDEXIT LEFT$ PRINT STR$

ASN ENDIF LEN PROCEDURE STRING

ATN ENDLOOP LET PUT SUBSTR

BASE ENDWHILE LNOT RAD TAB

BOOLEAN EOF LOG READ TAN

BYE ERR LOG10 REAL THEN

BYTE ERROR LOOP REM TO

CHAIN EXEC LOR REPEAT TRIM$

CHD EXITIF LXOR RESTORE TROFF

CHR$ EXP MID$ RETURN TRON

CHX FALSE MOD RIGHT$ TRUE

109

Appendix B. Quick Reference

CLOSE FIX NEXT RND TYPE

COS FLOAT NOT RUN UNTIL

CREATE FOR ON SEEK UPDATE

DATA GET OPEN SGN USING

DATE$ GOSUB OR SHELL VAL

DEG GOTO PARAM SIN WHILE

DELETE IF PAUSE SIZE WRITE

DIM INPUT SQ XOR

Table B-5. BASIC09 Statements

BASE 0 ELSE GOTO OPEN RETURN

BASE 1 END IF/THEN PARAM RUN

BYE ENDEXIT INPUT PAUSE SEEK

CHAIN ENDIF KILL POKE SHELL

CHD ENDLOOP LET PRINT STOP

CHX ENDWHILE LOOP PUT TROFF

CLOSE ERROR NEXT RAD TRON

CREATE EXITIF/THEN ON ERROR
GOTO

READ TYPE

DATA FOR/TO/STEP ON/GOSUB REM UNTIL

DEG GET ON/GOTO REPEAT WHILE/DO

DELETE GOSUB RESTORE WRITE

DIM

Table B-6. Transcendental Functions

ACS (x) COS (x) LOG10 (x) SIN (x)

ASN (x) EXP (x) PI TAN (x)

ATN (x) LOG (x)

Table B-7. Numeric Functions

ABS (x) LAND (m,n) MOD (m,n) SQ (x)

FIX (x) LNOT (m,n) RND (x) SQR (x)

FLOAT (m) LOR (m,n) SGN (x) SQRT (x)

INT (x) LXOR (m,n)

110

Appendix B. Quick Reference

Table B-8. String Functions

ASC (char$) LEFT$ (str$,m) RIGHT$ (str$,m) TRIM$ (str$)

CHR$ (m) LEN (str$) STR$ (x) VAL(str$)

DATE$ MID$ (str$,m,n) SUBSTR(st1$,st2$)

Table B-9. Miscellaneous Functions

ADDR (var) FALSE POS TAB (m)

EOF (#path) PEEK (addr) SIZE (var) TRUE

ERR

Table B-10. Operator Precedence

highest -> NOT (negate)

^ **

* /

+

> < <> = >= <=

AND

lowest -> OR XOR

111

Appendix B. Quick Reference

112

Appendix C. BASIC09 Error Codes

10 Unrecognized Symbol
11 Excessive Verbage (too many keywords or symbols)
12 Illegal Statement Construction
13 I-code Overflow (need more workspace memory)
14 Illegal Channel Reference (bad path number given)
15 Illegal Mode (Read/Write/Update/Dir only)
16 Illegal Number
17 Illegal Prefix
18 Illegal Operand
19 Illegal Operator

20 Illegal Record Field Name
21 Illegal Dimension
22 Illegal Literal
23 Illegal Relational
24 Illegal Type Suffix
25 Too-Large Dimension
26 Too-Large Line Number
27 Missing Assignment Statement
28 Missing Path Number
29 Missing Comma

30 Missing Dimension
31 Missing DO Statement
32 Memory Full (need more workspace memory)
33 Missing GOTO
34 Missing Left Parenthesis
35 Missing Line Reference
36 Missing Operand
37 Missing Right Parenthesis
38 Missing THEN statement
39 Missing TO

40 Missing Variable Reference
41 No Ending Quote
42 Too Many Subscripts
43 Unknown Procedure
44 Multiply-Defined Procedure
45 Divide by Zero
46 Operand Type Mismatch
47 String Stack Overflow
48 Unimplemented Routine
49 Undefined Variable

50 Floating Overflow
51 Line with Compiler Error
52 Value out of Range for Destination
53 Subroutine Stack Overflow
54 Subroutine Stack Underflow
55 Subscript out of Range

113

Appendix C. BASIC09 Error Codes

56 Parameter Error
57 System Stack Overflow
58 I/O Type Mismatch
59 I/O Numeric Input Format Bad

60 I/O Conversion: Number out of Range
61 Illegal Input Format
62 I/O Format Repeat Error
63 I/O Format Syntax Error
64 Illegal Path Number
65 Wrong Number of Subscripts
66 Non-Record-Type Operand
67 Illegal Argument
68 Illegal Control Structure
69 Unmatched Control Structure

70 Illegal FOR Variable
71 Illegal Expression Type
72 Illegal Declarative Statement
73 Array Size Overflow
74 Undefined Line Number
75 Multiply-Defined Line Number
76 Multiply-Defined Variable
77 Illegal Input Variable
78 Seek Out of Range
79 Missing Data Statement
80 Print Buffer Overflow

Error codes above 80 are those used by OS-9 or other external programs. Consult the
"OS-9 User’s Guide" for a list of error codes and explanations.

114

Appendix D. The BASIC09 Graphics Interface Module

The Graphics Interface module provides a simple and convenient way to access the
colour graphics and joystick functions of the Dragon Computer from BASIC09 pro-
grams. The module is a program written in assembly language and stored in a file
called "GFX". It can be loaded into memory using the OS-9 "LOAD" command prior
to or after called BASIC09, or it will be automatically called by BASIC09 the first time
it is referenced in a program if the "GFX" file is located in the execution ("CMDS")
directory.

"GFX" is called using the BASIC09 "RUN" statement. The first parameter passed is
the name of the graphics function desired. Other parameters are used to pass coordi-
nates, colour modes, etc.

The are two basic graphics modes: 4-colour having 128 by 192 pixel resolution, and 2-
colour having 256 by 192 pixel resolution. The display is treated as a 256 by 192 point
grid with coordinates 0,0 in the lower left-hand corner. X (horizontal) coordinates
in either mode must be in the range of 0 to 255. An X-coordinate greater than 255
will cause a run-time error. Y coordinates (vertical) must be in the range of 0 to 191.
A number greater than 191 will be replaced by 191. Some of the graphics functions
require or optionally accept a colour mode which controls the foreground colour and
colour set. The mode and colour codes are given in the table on the next page.

Table D-1. Colour Graphics Modes and Colour Codes

Colour
Code

Two Colour
Format

Four Colour
Format

Background Foreground Background Foreground

Colour Set 1 00 Black Black Green Green

01 Black Green Green Yellow

02 Green Blue

03 Green Red

Colour Set 2 04 Black Black Buff Buff

05 Black Buff Buff Cyan

06 Buff Magenta

07 Buff Orange

Colour Set 3* 08 Black Black

09 Black Dark Green

10 Black Med. Green

11 Black Light Green

Colour Set 4* 12 Black Black

13 Black Green

115

Appendix D. The BASIC09 Graphics Interface Module

Colour
Code

Two Colour
Format

Four Colour
Format

Background Foreground Background Foreground

14 Black Red

15 Black Buff

Note: Colour Sets 3 and 4 are not available on PAL video system (U.K. and European)
models.

MODE

Calling Syntax: RUN GFX("Mode",Format,Colour)

MODE switches the screen from alphanumeric to graphics display mode, and selects
the screen mode and colour mode. "Format" determines between two-colour (Format
= 0), or four-colour (Format = 1) graphics modes. "Colour" is the initial colour code
that specifies the foreground colour and colour set.

This command must be given before aby other graphics command is used. The first
time MODE is called, it requests 6K bytres of memory from OS-9 for use as the graph-
ics display memory. MODE will return an error if sufficient free memory is not avail-
able.

An example:

RUN GFX("Mode",1,3)

selects four-colour mode graphics is used, and the initial foreground colour is red.

MOVE

Calling Syntax: RUN GFX("Move",X,Y)

MOVE positions the (invisible) graphics cursor to the specified location without
changing the display. X and Y are the coordinates of the new position.

Example:

RUN GFX("Move",0,0)

This example positions the cursor in the lower left-hand corner.

COLOR

Calling Syntax: RUN GFX("Color",Colour)

COLOR changes the current foreground colour (and possibly the colour set). The
current graphics mode and cursor position are not changed. For example:

RUN GFX("Color",0)

116

Appendix D. The BASIC09 Graphics Interface Module

changes the foreground colour to green in four-colour format (or black in two-colour
format).

POINT

Calling Syntax: RUN GFX("Point",X,Y) or
RUN GFX("Point",X,Y,Colour)

POINT moves the graphics cursor to the specified X.Y coordinate and sets the pixel at
that coordinate to the current foreground colour. If the optional "Colour" is specified,
the current foreground colour is set to the given "Colour". For example:

RUN GFX("Point",0,192,1)

Point moves the cursor to the upper left-hand corner and changes the foreground
colour to green in two-colour format, or it changes the colour to yellow in the four-
colour format.

CLEAR

Calling Syntax: RUN GFX("Clear") or
RUN GFX("Clear",Colour)

CLEAR resets all points on the screen to the background colour, or if the optional
colour is given presets the screen to that colour. The current graphics cursor is reset
to (0,0).

LINE

Calling Syntax: RUN GFX("Line",x2,y2)
RUN GFX("Line",x2,y2,Colour)
RUN GFX("Line",x1,y1,x2,y2)
RUN GFX("Line",x1,y1,x2,y2,Colour)

LINE draw lines in various ways. If one coordinate is given, the line will be drawn
from the current graphics cursor position to the coordinates specified. If two sets of
coordinates are given, they are used as the start and end points of the line. The line
will be drawn in the current foreground colour unless a new colour is given as a
parameter. After the line is drawn the graphics cursor will be positioned at x2,y2. For
example

RUN GFX("Line",0,0,0,192)

draws a line from (0,0) to (0,192).

RUN GFX("line",24,65,2)

draws a blue line (4-colour mode) to point 24,65.

117

Appendix D. The BASIC09 Graphics Interface Module

CIRCLE

Calling Syntax: RUN GFX("Circle",Radius)
RUN GFX("Circle",Radius,Colour)
RUN GFX("Circle",X,Y,Radius)
RUN GFX("Circle",X,Y,Radius,Colour)

CIRCLE draws a circle of the given radius. The current graphics cursor position is
assumed if no X,Y value is given. The current foreground colour is assumed if the
Colour parameter is not used. The center of the circle must be on the screen.

ALPHA

Calling Syntax: RUN GFX("Alpha")

Alpha is a quick convenient way of getting the screen back to alphanumeric mode.
When graphics mode is entered again, the screen will show the previous unchanged
graphics display.

QUIT

Calling Syntax: RUN GFX("Quit")

QUIT switches the screen back to alpha mode and returns the 6K byte graphics dis-
play memory to OS-9.

GLOC

Calling Syntax: RUN GFX("Gloc",Vdisp)

GLOC returns the address of the video display RAM as an integer number. This ad-
dress may be used in subsequent PEEK and POKE operations to access the video
display directly. GLOC can be used to create special functions that are not available
in the Graphics Module.

GCOLR

Calling Syntax: RUN GFX("Gcolr",Colour)
RUN GFX("Gcolr",X,Y,Colour)

GCOLR is used to read the colour of the pixel at the current graphics cursor position,
or from the coordinates X,Y. The parameter "Colour" may be an integer or a byte
variable in which the colour code is returned.

JOYSTK

Calling Syntax: RUN GFX("Joystk",Stick,Fire,X,Y)

JOYSTK returns the status of the specified joystick’s Fire button, and returns the
X,Y position of the joystick. The Fire button may be read as a BYTE, INTEGER, or
a BOOLEAN value. Non-zero (TRUE) means the button was pressed. The X,Y values

118

Appendix D. The BASIC09 Graphics Interface Module

returned may be BYTE or INTEGER variables, and they will be in the range 0 to 63.
The Stick parameter may be BYTE or INTEGER, and should be 0 for RIGHT, or 1 for
LEFT, depending on whether the RIGHT or the LEFT joystick is to be tested.

Example:

RUN GRX("Joystk",1,leftfire,leftx,lefty)

A Sample Graphics Program
The program on the next page illustrates how the GFX module is called and used. It
creates an analog clock on the graphics display.

PROCEDURE clk
0000 (* Simple Clock Simulator *)
001C DIM time(4),last(4),xx(3),yy(3):INTEGER
0043 DIM x0,y0,radius,bkg:INTEGER
0056 DIM i,j,x1,y1,x2,y2:INTEGER
0071 DEG
0073 bkg=0
007A x0=128
0081 y0=96
0088 radius=95
008F RUN GFX("MODE",1,bkg+1)
00A5 RUN GFX("CLEAR")
00B2 RUN GFX("CIRCLE",x0,y0,radius)
00CF FOR i=0 to 89 STEP 6
00E4 x2=SIN(i)*radius
00F4 y2=COS(i)*radius
0104 x1=x2*.9
0115 y1=y2*.9
0126 j=MOD(i/30,3)+bkg+1
013B RUN GFX("LINE",x0+x1,y0+y1,x0+x2,y0+y2,j)
016C RUN GFX("LINE",x0-x1,y0-y1,x0-x2,y0-y2,j)
019D RUN GFX("LINE",x0+y1,y0-x1,x0+y2,y0-x2,j)
01CE RUN GFX("LINE",x0-y1,y0+x1,x0-y2,y0+x2,j)
01FF NEXT i
020A FOR i=1 TO 3
021A time(i)=0
0225 xx(i)=x0
0231 yy(i)=y0
023D NEXT i
0248 LOOP
024A time$=DATE$
0250 last=time
0258 time(3)=VAL(MID$(time$,16,2))*6
026E time(2)=VAL(MID$(time$(13,2))*6
0284 time(1)=MOD(VAL(MID$(time$,10,2))*30+time/2)/12,360)
02A9 j=last(3)
02B3 FOR i=3 TO 1 STEP -1
02C9 IF i=3 OR j=0 OR ABS(time(i)-last(i+1)) <6 OR

ABS(time(i)-j) <6 THEN
0300 RUN GFX("LINE",x0,y0,xx(i),yy(i),bkg)
032B xx(i)=x0+SIN(time(i))*radius*(.3+i*.2)
035A yy(i)=y0+COS(time(i))*radius*(.3+i*.2)
0389 RUN GFX("LINE",x0,y0,xx(i),yy(i),bkg+i)

119

Appendix D. The BASIC09 Graphics Interface Module

03B7 ENDIF
03B9 NEXT i
03C4 WHILE time$=DATE$ DO
03CF ENDWHILE
03D3 ENDLOOP

120

	Table of Contents
	Chapter 1. Introduction
	Comments on BASIC09
	The History of BASIC09

	Chapter 2. Introduction to BASIC09 Programming
	What is a Program?
	A Simple BASIC09 Program
	Basic Programming Techniques: Loops and Arithmetic
	Listing Procedure Names
	Requesting More Memory
	Storing and Recalling Programs
	How to Print Program Listings
	BASIC09's Four Modes:
	More about the Workspace...
	Where to go From Here?

	Chapter 3. System Mode
	System Mode Commands

	Chapter 4. Edit Mode
	Overview of Edit Commands
	How the Editor Works
	LineNumber Oriented Editing
	StringOriented Editing
	Moving the Edit Pointer
	Inserting Lines
	Deleting Lines
	Listing Lines
	Search: Finding Strings
	Change: String Substitution

	Chapter 5. Execution Mode
	Running Programs
	Execution Mode: Technically Speaking

	Chapter 6. Debug Mode
	Overview of Debug Mode
	Debug Mode Commands
	Debugging Techniques
	Debug Mode as a Desk Calculator

	Chapter 7. Data Types, Variables and Data Structures
	Why are there different data types?
	Data Structures
	Atomic Data Types
	Type BYTE
	Type INTEGER
	Type REAL
	Type STRING
	Type BOOLEAN
	Automatic Type Conversion

	Constants
	Numeric Constants
	Boolean Constants
	String Constants

	Variables
	Parameter Variables
	Arrays
	Complex Data Types

	Chapter 8. Expressions, Operators, and Functions
	Evaluation of Expressions
	Operators
	Operator Precedence

	Functions

	Chapter 9. Program Statements and Structure
	Program Structure
	Line Numbers
	Assignment Statements
	LET Statement
	POKE Statement

	Control Statements
	IF Statement: Type 1
	IF Statement: Type 2
	FOR/NEXT Statement
	WHILE..DO Statement
	REPEAT..UNTIL Statement
	LOOP and ENDLOOP/EXITIF and ENDEXIT Statements
	GOTO Statement
	GOSUB/RETURN Statements
	ON GOTO/GOSUB Statement
	ON ERROR GOTO Statement

	Execution Statements
	Run Statement
	Parameter Passing
	Calling External Procedures
	KILL Statement
	CHAIN Statement
	SHELL Statement
	END Statement
	Stop Statement
	BYE Statement
	ERROR Statement
	PAUSE Statement
	CHD and CHX Statements
	DEG and RAD Statements
	BASE 0 and BASE 1 Statements
	TRON and TROFF Statements
	Comment Statements

	Declarative Statements
	DIM Statement
	Declaring Simple Variables
	Array Declarations

	PARAM Statement
	TYPE Statement

	Chapter 10. Input and Output Operations
	Files and Unified Input/Output
	I/O Paths
	INPUT Statement
	PRINT Statement
	OPEN Statement
	CREATE Statement
	Close Statement
	DELETE Statement
	SEEK Statement
	WRITE Statement
	READ Statement
	GET/PUT Statement

	Internal Data Statements
	DATA/READ/RESTORE Statements

	Formatted Output: The Print Using Statement
	Real Format
	Exponential Format
	Integer Format
	Hexadecimal Format
	String Format
	Boolean Format
	Control Specifications
	Repeat Groups

	Chapter 11. Program Optimization
	General Execution Performance of BASIC09
	Optimum Use of Numeric Data Types
	Looping Quickly
	Optimum Use of Arrays and Data Structures
	The PACK Command
	Eliminating Constant Expressions and SubExpressions
	Fast Input and Output Functions
	Professional Programming Techniques

	Appendix A. Sample Programs
	Appendix B. Quick Reference
	Appendix C. BASIC09 Error Codes
	Appendix D. The BASIC09 Graphics Interface Module

